[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
878
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/06/07(日)18:18 ID:Q0Rzcycw(2/2) AAS
>>877
613 自分返信:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/06/06(土) 19:23:27.44 ID:SrYikU2t [9/10]
>>583
じゃ、もう一言w

「反例の存在証明」
<まず確認>
1.箱への数の入れ方は、「どんな実数を入れるかはまったく自由」である
2.したがって、”独立同分布である i.i.d. IID”(下記)で、箱に数を入れることは可能
3.時枝記事の”勝つ戦略”なるものは
 「ある1つの箱を残して、他の箱を全て開けることを許せば、
 その1つの箱の実数を 確率99%(あるいは確率1-ε(εは任意に小さく取れる))で的中できる」
 ということだった
<反例証明>
1.”独立同分布 i.i.d. IID”で、箱に数を入れるとする
 (可算無限個の確率変数を扱うことは、大学レベルの確率論&確率過程論の射程内である)
2.IIDとして、サイコロで箱に数を入れれば、的中確率は1/6である
 どの箱も例外無し。どの1つの箱も 確率99%にならないので、反例となる
3.区間[0,1]の一様分布から、任意の実数を選んで IIDで 数を入れる
 ルベーグ測度では区間[0,1]の1点r( 0 =< r =< 1 ) の測度は0(∵零集合)で、的中確率0
 これも、反例となる
QED
(補足:”独立”だから、問題の箱以外を開けても、問題の箱の確率には 何ら影響しない。サイコロなら1/6、区間[0,1]の一様分布内の1点rなら的中確率0)
w(^^;

この「反例証明」が分からないのは、小学生レベルの”数学落ちこぼれ”ww

(参考)
外部リンク:www.practmath.com
実用的な数学を
2019年6月20日 投稿者: TAKAN
独立同分布である i.i.d. IID
(抜粋)
|| 同じ分布のデータは互いに不干渉だよ
これは「確率変数を別々に扱えるよ」という『仮定』です。
これが仮定されていると、非常に計算がしやすくなります。
相関を考えなくて良いので、共分散などを使う必要がありません。
なにせ条件付き確率の発想から分かる通り、独立性は特別なものです。
といっても、そうそうおかしなことにはならないわけですけど。
(引用終り)
880: 2020/06/08(月)16:41 ID:ZNiOPlY2(2/2) AAS
>>878
(反例の非存在の証明)

「箱入り無数目」記事に従って、100列それぞれから1箱を選ぶ
このうち、代表元と一致しない箱はたかだか1箱である

なぜなら、自列の決定番号dが他の列の決定番号の最大値Dより
大きくなる列はたかだか1列しか存在しないからである

もしd>Dとなる列が2列以上あるとすると
di>dj かつ dj>diとなる
自然数di,djが存在することになるが
これは自然数の全体が全順序集合であることと矛盾する

馬鹿は、自然数が全順序集合でないといいたいようだwww
890
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/06/12(金)15:04 ID:mZK3Uri8(1) AAS
あほサルの相手など、全く不要
 >>878は、大学教程の確率論・確率過程論を学べば
ほぼ自明ですよwwww
892: 2020/06/13(土)22:58 ID:lOWOoBWZ(1) AAS
>>890
> >>878は、大学教程の確率論・確率過程論を学べば
>ほぼ自明ですよwwww
>>878の誤りが具体的に指摘されており、瀬田は指摘に答えなければならない。
にもかかわらず壊れた機械のように自明と繰り返すのみ。
安達といい瀬田といいキチガイはみな独善的。
893
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/06/14(日)10:31 ID:1kqaL5Im(1) AAS
あほサルの相手など、全く不要
 >>878は、大学教程の確率論・確率過程論を学べば
ほぼ自明ですよwwww
896
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/07/04(土)19:41 ID:CndtYA/1(1/2) AAS
>>878 補足

<反例証明2>
1.時枝の戦略で、100列並べる前のある箱 m (=100d+k :並べ変えた100列中のk列のd番目の箱)
 が、99%の確率で的中できるとして、時枝戦略による予想では、その箱の数がA0だと示されたとする
2.ところで、時枝記事では、箱に入れる数は、どの箱も出題者の自由だった
3.そこで、>>878と同じようにIIDを仮定すると、そのm番目に入れる数もまた、時枝記事のルール上自由だ
 よって、そのm番目以外を固定したとして
 ・m番目に コイントスで数を入れれば 数の範囲は 0 or 1 の整数で、的中確率は1/2
  (もし、表が出れば ある実数x、裏なら別の実数y を入れるとすれば、的中確率は1/2のままだが、数の範囲は実数全体)
 ・m番目に サイコロで数を入れれば 数の範囲は1〜6の整数で、的中確率は1/6
 ・m番目に 区間[0,1]の一様分布の数を入れれば 数の範囲は0〜1の実数で、的中確率は0 (上記のコイントスの実数版に類似)
4.明らかに、上記3は 1の時枝の反例である(99%の確率で的中など、実現できないことは明白)
QED
(^^;
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.032s