[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
759
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/28(土)21:27 ID:MRwZqC/h(4/5) AAS
>>723 補足
 確率空間?(>>747-748)ww
iid(独立同分布)を仮定すると
可算無限個の箱があっても
箱が1つの場合と同じ確率空間で扱える

これ、確率論の常識ですょ!!
ほとんど、自明でしょw
例えば、サイコロの場合、下記です(^^;

(参考)
外部リンク:ja.wikipedia.org
確率空間
(抜粋)
定義
数学、特に確率論において、確率測度(かくりつそくど)とは、可測空間 (S, E) に対し、E 上で定義され P(S) = 1 を満たす測度 P のことである。
このとき、三つ組 (S, E, P) のことを確率空間と呼ぶ。さらに、集合 S を標本空間、S の元を標本あるいは標本点、完全加法族 E の元を事象あるいは確率事象と呼ぶ。また、E の元としての S を全事象という。
事象 E に対し、P の E における値 P(E) を、事象 E の確率という。つまり、E は確率が定義できることがらの集まりである。
必ずしも S の部分集合全てが事象とはならないことに注意されたい。


・実数からなる区間 [0, 1] とそのボレル集合族 B からなる可測空間 ([0, 1], B) 上でルベーグ測度 μ を考えれば、μ([0, 1]) の値は区間の長さ |[0, 1]| = 1 ? 0 = 1 に等しいので、μ は ([0, 1], B) 上の確率測度であり、三つ組 ([0, 1], B, μ) は確率空間になる。
・サイコロ投げの確率空間は次のようなものである:
 S = {1, 2, 3, 4, 5, 6}, E = 2^S, P({k}) = 1/6 (k = 1, 2, 3, 4, 5, 6)

外部リンク:mathtrain.jp
確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06
(抜粋)
確率空間とは (Ω,F,P) の三つ組のことを言います
ただし,
・Ω は集合
・F は Ω の部分集合族(σ -加法族)
・P は F から実数への非負関数(確率測度)
これだけだとよく分からないと思うので,以下で一つずつ解説していきます。
とりあえず「測度論的確率論では,確率を議論するときには確率空間というものの上で考える。そして,確率空間は3つの物のセットのことを表す」と覚えておいて下さい
760: 2020/03/28(土)21:41 ID:+ARtdTH+(12/13) AAS
>>759
箱入り無数目の確率空間になってないのでゼロ点
落ちこぼれには無理でした
761
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/28(土)22:35 ID:MRwZqC/h(5/5) AA×
>>759

前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.055s