[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
725
(2): That's done 2020/03/27(金)15:45 ID:asHKGG7T(30/35) AAS
無限列xとその同値類の代表元r(x)を比較した場合
任意の自然数nについて「第n項が不一致」って事象は、
任意有限個では独立だけど、無限個で考えたら独立ではないね

なぜなら自然数の無限部分集合について、その要素となるn全部で
「第n項が不一致」となることはないから
(不一致となる項は有限個)
33
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/22(日)08:06 ID:jNutOcAm(1/6) AAS
>>24
>Ωが次の性質を持つ限りZFCと両立することはできません。
>・Fを
>x∈F⇔∃x1∋x2∋‥‥∋xn, x1=Ω, xn=x
>によって定められる集合とするときFの任意の要素はシングルトンか空集合。
>・Ωは有限Zermelo ordinal numberではない。

(前スレ>>961より)
外部リンク:ja.wikipedia.org
自然数
(抜粋)
<ノイマン構成>
・任意の集合 a の後者は a と {a} の合併集合として定義される。
 suc (a):=a∪{a}
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
<Zermelo構成>(前スレ>>725より)
他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
(引用終り)

なので、<Zermelo構成>も<ノイマン構成>も
∈-数列
0∈1∈2∈3・・・∈n∈・・・→ω
("→ω"の意味は、ωに向けてずっと続くってことね)
(なお、ωは、超限順序数で、いわゆる”有限”ではない)

で、「0∈1∈2∈3・・・∈n∈・・・→ω」は、<Zermelo構成>も<ノイマン構成>も全く同じ
だから、この<Zermelo構成>を否定することはできません
(∵<Zermelo構成>を否定すると、<ノイマン構成>も同様に否定されるから)

但し、
<ノイマン構成>においては、ω=N(自然数の集合)なので
n∈ω(=N)は、可
というか
<ノイマン構成>なら、任意のm<nで、m∈n成立
(∵<ノイマン構成>では、後者関数の定義が、それ以前の全てを要素からなる集合だから(前スレ966))

一方、<Zermelo構成>においては、もともと、任意のm<nで、m∈n不成立
(∵<Zermelo構成>では、後者関数の定義が、異なるため)
だから、もともと、”n not∈ω(=x1=Ωかな)”なのです(nは、任意の自然数)
これは、後者関数の定義の問題なのです
(なので、<Zermelo構成>もZFC内で成立します)

つづく
64
(2): 2019/12/25(水)12:17 ID:xYwdBxRF(2/3) AAS
>>63 補足

1.確かに、”公理的”に、自然数Nから、続いて順序数ωを定義していくときに、ノイマンの後者関数が一番すっきりしている
2.だが、後者関数の選び方には、他の流儀もあるという
3.順序数ωは、本質的に極限順序数であり、極限で定義することは、おかしなことはなにもない(>>63
4.いま問題になっていることは、このように、ノイマンの後者関数以外を使った場合に、極限でωを定義したときに、正則性公理に反するかどうかだ
5.それは「反しない」というのが私の主張ですよ

外部リンク:ja.wikipedia.org
自然数
(抜粋)
<ノイマン構成>
・任意の集合 a の後者は a と {a} の合併集合として定義される。
 suc (a):=a∪{a}
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
<Zermelo構成>(前スレ>>725より)
他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.033s