[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
723
(5): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/27(金)15:35 ID:JV2qk9Qn(12/14) AAS
<再録>
>>685 補足
(引用開始)
大学教程の確率論を学んだ高い立場に立たないと
時枝理論のおかしさに気付かないし
いつまでも、”はまって”抜け出せない
(引用終り)

補足:
1)数当てと言えば、確率ですね(下記 "chiebukuro.yahoo")
2)いま、一つ箱があり、サイコロの目を入れた。確率 1/6
3)複数の箱がある。iid(独立同分布)を仮定する
 下記のiidの説明 通り、箱一つと同じ計算になる
 サイコロの目を入れたなら、確率 1/6
4)可算無限個の箱がある。iid(独立同分布)を仮定する
 (ここは、大学の確率論の教程を学べば分かる)
 下記の通り、箱一つと同じ計算になる
 サイコロの目を入れたなら、確率 1/6
 どの箱も、例外無し!
5)ところが、時枝理論では、ある箱の数当てが 確率1/6ではなく、1-εにできるという
 大学の確率論の教程を学べば、「iidだからそれはおかしい」と即座に分かる!!
QED
(^^;

(参考)
外部リンク:detail.chiebukuro.yahoo.co.jp
mas********さん2016/3/2720:48:25 Yahoo
サイコロの目が出る確率は1/6ですが
サイコロの目を当てる確率はいくつですか?
回答
umi********さん 2016/3/2720:55:03
1/6 ですよ。
半分は国語の問題ですねw

外部リンク:www.practmath.com
実用的な数学を
2019年6月20日 投稿者: TAKAN
独立同分布である i.i.d. IID
(抜粋)
同じ分布のデータは互いに不干渉だよ
これは「確率変数を別々に扱えるよ」という『仮定』です。
これが仮定されていると、非常に計算がしやすくなります。
相関を考えなくて良いので、共分散などを使う必要がありません。

外部リンク:ja.wikipedia.org
独立同分布

>>702 補足
これが理解できないんだ
まあ、難しくないけど
「可算無限個の箱→可算無限の確率変数族」
という読み替えができるかどうか?

ここが大学の確率論の教程だけれど
あとは、「iid(独立同分布)を仮定する」なんて
確率論の頻出で、いろはのい、初歩の初歩です
724
(1): That's done 2020/03/27(金)15:41 ID:asHKGG7T(29/35) AAS
>>723
>”ある箱の数当て”が確率 …1-εにできる

どうしてもその”誤り”にはまって抜け出せないね 何故?

「ある箱の数当て」ではないよ
「当たる箱の選出」だよ

箱の中身は定数だからiidなんて無用 分布なんてないし

That's done. (それは終わったよ)
726
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/27(金)16:48 ID:JV2qk9Qn(13/14) AAS
おサル必死
くっ くっ く、 >>723ご参照 ww(^^;
728
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/27(金)17:12 ID:JV2qk9Qn(14/14) AAS
おサル必死
くっ くっ く、 >>723ご参照 ww(^^;
終わっているのは、お ま え www
730: That's done 2020/03/27(金)17:22 ID:asHKGG7T(33/35) AAS
>>723
>>724

「ある箱の数当て」ではないよ
「当たる箱の選出」だよ

箱の中身は定数だからiidなんて無用
759
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/28(土)21:27 ID:MRwZqC/h(4/5) AAS
>>723 補足
 確率空間?(>>747-748)ww
iid(独立同分布)を仮定すると
可算無限個の箱があっても
箱が1つの場合と同じ確率空間で扱える

これ、確率論の常識ですょ!!
ほとんど、自明でしょw
例えば、サイコロの場合、下記です(^^;

(参考)
外部リンク:ja.wikipedia.org
確率空間
(抜粋)
定義
数学、特に確率論において、確率測度(かくりつそくど)とは、可測空間 (S, E) に対し、E 上で定義され P(S) = 1 を満たす測度 P のことである。
このとき、三つ組 (S, E, P) のことを確率空間と呼ぶ。さらに、集合 S を標本空間、S の元を標本あるいは標本点、完全加法族 E の元を事象あるいは確率事象と呼ぶ。また、E の元としての S を全事象という。
事象 E に対し、P の E における値 P(E) を、事象 E の確率という。つまり、E は確率が定義できることがらの集まりである。
必ずしも S の部分集合全てが事象とはならないことに注意されたい。


・実数からなる区間 [0, 1] とそのボレル集合族 B からなる可測空間 ([0, 1], B) 上でルベーグ測度 μ を考えれば、μ([0, 1]) の値は区間の長さ |[0, 1]| = 1 ? 0 = 1 に等しいので、μ は ([0, 1], B) 上の確率測度であり、三つ組 ([0, 1], B, μ) は確率空間になる。
・サイコロ投げの確率空間は次のようなものである:
 S = {1, 2, 3, 4, 5, 6}, E = 2^S, P({k}) = 1/6 (k = 1, 2, 3, 4, 5, 6)

外部リンク:mathtrain.jp
確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06
(抜粋)
確率空間とは (Ω,F,P) の三つ組のことを言います
ただし,
・Ω は集合
・F は Ω の部分集合族(σ -加法族)
・P は F から実数への非負関数(確率測度)
これだけだとよく分からないと思うので,以下で一つずつ解説していきます。
とりあえず「測度論的確率論では,確率を議論するときには確率空間というものの上で考える。そして,確率空間は3つの物のセットのことを表す」と覚えておいて下さい
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.048s