[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
697
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/27(金)10:27 ID:JV2qk9Qn(4/14) AAS
>>696

つづき
2.レーベンハイム・スコーレムの定理 (Lowenheim-Skolem Theorem)
とある勉強会で,連続体仮説の否定の無矛盾性の解説をするために レーベンハイム・スコーレムの定理を分かった気にさせる解説を執筆完(2018.09.29).

レーベンハイム・スコーレムの定理 (初出 1915年 ) は,一階述語論理のモデルの大きさに関する命題である.大雑把に言えば, その一階述語論理に用意された記号の集合が可算無限個のとき,その論理体系の中の 公理系がモデルを持てば,そのモデルの要素数(基数)を可算無限個まで絞ることも, 非可算無限個まで水増しすることもできるという内容である.

画像リンク


これは,全体が可算個の集合からなる集合論のモデルを保証したり,自然数の集合のサイズが 非可算個でも矛盾がないことを意味し,一見,それまで築かれた数学的常識と 反するので,発見当初は,レーベンハイム・スコーレムのパラドクスとして 扱われた.その後,この定理の解釈が整理されるとともに,今は,特にパラドクスでは ないという認識になっていると思う.

私は,今,勉強会のためにこの解説を作りながら,この定理は 無限集合に関する我々自身の思考に関わるもので,とても 含蓄のある定理だと感じている.
(引用終り)
以上
699: 2020/03/27(金)10:35 ID:asHKGG7T(12/35) AAS
>>696-697
いくら読んでも「箱入り無数目」の否定は導けないよ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.042s