[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
674(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/26(木)20:22 ID:+Ol1TdQp(4/6) AAS
>>671
(引用開始)
∞が超準自然数だとしても「箱入り無数目」の障害にはならない
∞が最大の元となる場合のみ「箱入り無数目」の障害となるが、
最大の元としての∞はペアノの公理の1つである後者の存在と
矛盾するのであり得ない
(引用終り)
意味不明だな
言葉のサラダ?
言葉のスパゲティー?w(^^;
(参考)
外部リンク:hidamarikokoro.jp
クリニックブログ
2017.01.12
言葉のサラダとは?
「解体した会話」とはどのような会話なのでしょうか?
「解体した会話」とは、「脈絡のない」「前後のつながりがない」「理解できない」会話と言えるでしょう。
これらの解体した会話がひどくなると、まったく脈絡なく単語が出てくる「言葉のサラダ」と呼ばれる状態になります。
引用文献: 図解 よくわかる統合失調症
675: 2020/03/26(木)20:30 ID:/vnWknlA(9/11) AAS
>>674
意味は明瞭
決定番号nが標準自然数でも超準自然数でも、
n+1が存在するからその先の尻尾が得られる
一方∞が最大の要素であって、∞+1が存在しないなら
決定番号が∞の場合、その先の尻尾が得られない
「箱入り無数目」の方法の妨げとなるものは
「決定番号の先の尻尾の非存在」しかない
しかし、∞+1が存在しない、という主張は
ペアノの公理である後者の存在を真っ向から否定する
676(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/26(木)20:36 ID:+Ol1TdQp(5/6) AAS
>>674
数学基礎論と消えたパラドックス/H. フリードマンの定理w (^^;
”ペアノの算術の可算な超準モデルは、自らと同型な接頭部を持つ.
標準モデルはたった1つしかないが、
超準モデルは可算のものに限っても非可算無限個存在する.”ww
(参考)
外部リンク:sites.google.com
Sendai Logic Homepage
仙台ロジック倶楽部OLDの関係資料ページを復旧したものです.
文章は田中一之先生によるものです.(旧ページ製作はNBZ先輩)
■ 読み物系
□数学基礎論と消えたパラドックス(『数学セミナー』1993年8月号より)
パラドックスから数学基礎論の誕生,不完全定理への流れを解説.
(抜粋)
■ H. フリードマンの定理
言葉の説明を後回しにして、定理を述べる.
ペアノの算術の可算な超準モデルは、自らと同型な接頭部を持つ.
和積演算を伴った非負整数の集合をペアノの算術の“標準モデル”といい、
それと同型でない数学的構造でペアノの公理を満たすものを“超準モデル”という.
標準モデルはたった1つしかないが、
超準モデルは可算のものに限っても非可算無限個存在する.
超準モデルもペアノの公理を満たしているから、
その上に大小関係や和積演算が定義されている.
モデルの要素を大きさの順に並べて、
あるところで大きい方と小さい方に分け、小さい方を“接頭部”と呼ぶ.
どんな超準モデルも、
標準モデルと同型な接頭部を持つことが簡単に示せる.
そして、どんな超準モデルも
自分の縮小コピーを接頭部として持ついうのがフリードマンの結果である.
これは、自分と同じものは自分の中で造れないという第二不完全性(+完全性定理)と矛盾するようだが、そうではない.
なぜなら、接頭部の切り口が自分では見つけられない(定義できない)からである.
この定理の証明がまた実に巧妙で面白い.
厳密な議論を紹介するスペースはないが、
以下に述べるアイデアからその卓抜さに共感戴ければ幸いである.
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.041s