[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
661(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/26(木)15:22 ID:Toc1jVc8(5/8) AAS
>>657
補足
あと
1)決定番号dの範囲が無限大になるとき、dは非正則分布になる(下記ご参照)
この場合、確率的な取り扱いができない
(dを確率変数として考えた時、dの範囲が無限大なら、dは裾が減衰しないと、積分が発散して∞になる。そのとき、全事象Ω=1にすると、各事象は0とならざるを得ない。つまり、確率の公理を満たせない)
2)決定番号dをランダムに選ぶとか、あるいは(非可算無限集合たる同値類の中から)代表をランダムに選ぶことを考えるときには
下記の確率のベルトランのパラドックスのように、”無作為な選択の方法”を定義しなければ、確率計算ができない!
だが、時枝は定義がない。そもそも「(非可算無限集合たる同値類の中から)代表を無作為に選ぶ」が、定義できるのかどうか???
3)上記の1)と2)とを合わせて、確率計算で誤魔化しをしているのが、時枝記事です
QED
(参考)
外部リンク:to-kei.net
to-kei.net
非正則事前分布とは??完全なる無情報事前分布?
2017/10/06
(抜粋)
Contents [hide]
1 非正則な分布とは?一様分布との比較
2 非正則分布は確率分布ではない!?
3 非正則事前分布は完全なる無情報事前分布
4 まとめ
外部リンク:ja.wikipedia.org
(抜粋)
ベルトランの逆説(ベルトランのぎゃくせつ、英: Bertrand paradox)は、確率論の古典的解釈において発生する問題である。
確率変数を導入する方法やメカニズムが明確に定義されない場合、確率がうまく定義できない場合があることを示す例として与えた。
古典的な解答
この問題に対する古典的な解答は、以上のように、「無作為に」弦を選ぶ方法に依存する。
すなわち、無作為な選択の方法が確定すれば、そしてそのときのみ、この問題はwell-definedな解をもつ。
選択の方法は唯一ではないので、唯一の解は存在しえない。
662(1): 2020/03/26(木)15:33 ID:/vnWknlA(3/11) AAS
>>661
決定番号が必ず自然数の値をとることは
尻尾の同値関係と同値類の定義から示されることで
非可測だからといって決定番号が∞になることはない
上記を理解しましたか?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.032s