[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
625
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/23(月)07:54 ID:8hlHRLPg(1) AAS
>>597 補足説明

(引用開始)
ここで、出題の列Xと無関係な
 見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
 P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
 dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
 >>593と同様に
 列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中することになる
 (確率 P(d<dmax)=n/(n+1) 、即ち 1-ε でw )
これは、全くバカげた話ですw
(引用終り)

1.時枝理論を 回答者に有利なようにルールを変えることができる
 「同値類の代表は、回答者に有利に選び直せる」こととする
2.そうすると、dmaxはいくらでも 大きく取れる
 つまり、回答者が勝つためには、”d<dmax”なる dmaxを選べば勝てるのだ
 (∵ dmax=1とか、あり得ないけど、小さな数では明らかに勝てない。で、dmaxが好きなだけ大きくできることは自明で、そうすれば良い。可算無限長の数列だから)
3.もし、大きなdmaxを選ぶことができれば、時枝理論では
 「勝つ確率 P(d<dmax)=n/(n+1) 、即ち 1-ε」とできるという
 それは、d番目の箱からdmaxまで、dmax - d + 1 個の 箱の中の実数が、箱を開けずに的中できるということ
 dmaxは、いくらでも増やせるから、100万個でも1億個でも1兆個でも・・、箱を開けずに的中できる
 これは、明らかにおかしい(矛盾)
4.この矛盾の原因は、有限の代表番号dの存在にある
 よって、背理法により、”有限の代表番号dの存在”は否定された
QED
(^^;
626
(1): 2020/03/23(月)20:09 ID:lDyHiL++(1/2) AAS
>>625
>1.時枝理論を 回答者に有利なようにルールを変えることができる
> 「同値類の代表は、回答者に有利に選び直せる」こととする
>2.そうすると、dmaxはいくらでも 大きく取れる
> つまり、回答者が勝つためには、”d<dmax”なる dmaxを選べば勝てるのだ
dが分かってないのにどうやってd<dmaxとなるように選ぶの?

> (∵ dmax=1とか、あり得ないけど、小さな数では明らかに勝てない。
そんなことはない。大きかろうが小さかろうがd≦dmaxなら勝てる。

>で、dmaxが好きなだけ大きくできることは自明で、そうすれば良い。可算無限長の数列だから)
好きなだけ大きくしてもいいが、どうやってd≦dmaxを保証するの?dが分からないのに。バカ?

>3.もし、大きなdmaxを選ぶことができれば、時枝理論では
> 「勝つ確率 P(d<dmax)=n/(n+1) 、即ち 1-ε」とできるという
論理がおかしい。「時枝理論では」と「もし、大きなdmaxを選ぶことが出来れば」は相容れない。
なぜなら時枝戦略でdmaxの決め方は決められてるし、時枝戦略とは違う決め方をするなら「時枝理論では」とは言えない。
頭腐ってる?

> それは、d番目の箱からdmaxまで、dmax - d + 1 個の 箱の中の実数が、箱を開けずに的中できるということ
dが分かってないんだから、当てる箱はdmax番目。
d≦dmaxの場合、的中できるのはdmax番目以降のすべて(無限個)の箱。
まったく分かってないね。

> dmaxは、いくらでも増やせるから、100万個でも1億個でも1兆個でも・・、箱を開けずに的中できる
> これは、明らかにおかしい(矛盾)
まったく矛盾してない。
1兆個?少な過ぎw 無限個だよw まったく分かってないね。

>4.この矛盾の原因は、有限の代表番号dの存在にある
> よって、背理法により、”有限の代表番号dの存在”は否定された
決定番号=∞とは同値でないという意味だw
それは代表の定義に反するw
バカ、ここに極まれりw

まったく分かってませんね。時枝戦略を論じたいなら正しく理解することから始めましょう。
628: 2020/03/23(月)20:26 ID:+uQyfpo2(1/2) AAS
>>625
(「箱入り無数目」について)
>回答者が勝つためには、”d<dmax”なる dmaxを選べば勝てるのだ

然り

>それは、d番目の箱からdmaxまで、
>dmax - d + 1 個の 箱の中の実数が、
>箱を開けずに的中できるということ

然り

>dmaxは、いくらでも増やせるから、
>100万個でも1億個でも1兆個でも・・、
>箱を開けずに的中できる

然り

ただ、無限個全体からみれば所詮「有限個」ですが

>これは、明らかにおかしい(矛盾)

おかしいだけでは「矛盾」とはいえないが
そこはおいておくとして

>この矛盾の原因は、有限の代表番号dの存在にある

もし、「同値類のほとんどすべての元の決定番号dが∞」だとしよう
その場合、「決定番号∞の元は、代表元と同値でない」ということになる
(なぜなら、自然数で番号づけられるどの項からも
 それ以降の全ての項が代表元と等しくなることがないから)
つまり、「尻尾の同値関係は、実は同値関係ではなかった」ということになる

それならそれで、同値関係でないという証明、つまり
「a〜b かつ b〜c であるが、a〜cでない」
という反例の無限列a,b,cを示すしかない

しかし、それは不可能だろう
なぜなら、a〜b かつ b〜cであれば、
a〜bの一致先頭番号d1とb〜cの一致先頭番号d2の
いずれか大きいほうが、a〜cの一致先頭番号になるから

つまり

>よって、背理法により、”有限の代表番号dの存在”は否定された

は背理法により否定される

要するに、「明らかにおかしい(矛盾)」がおかしいのであって
この場合、矛盾の原因となる直観を否定するしかない
630: 2020/03/23(月)22:03 ID:2vPoPtWs(1) AAS
>>625
> dmaxはいくらでも 大きく取れる

それは特定のある同値類(の代表元)に固定した場合であって

> ”有限の代表番号dの存在”は否定された

これは言えないよ

全ての同値類(ある1つの完全代表系に含まれる全ての代表元)について
は言えないから

もっと単純な例
実数を可算無限個の箱に入れていく
実数aに一致したら停止する
この場合aを固定したら有限回で停止しないと考えるのが妥当でも
実数のどれかに一致したら停止という条件なら有限回で停止する
631
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/24(火)07:52 ID:1Hky7X6d(1/5) AAS
>>625 追加
(>>597より 引用開始)
ここで、出題の列Xと無関係な
 見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
 P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
 dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
 >>593と同様に
 列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中することになる
 (確率 P(d<dmax)=n/(n+1) 、即ち 1-ε でw )
これは、全くバカげた話ですw
(引用終り)

1.時枝記事は、>>370ご参照
2.”広中−岡のエピソードの教訓”(>>594)から得られる 時枝記事の抽象化
 要するに「出題の可算無限長数列Xがあって、数列のしっぽの同値類から、うまく代表rXを選ぶことができて、d番目からさきが一致するようにできる」
 というもの。ここに、dが決定番号です
3.見知らぬ "おっさん" が勝手に、数列Yを作って、同じように同値類から決定番号dmaxを得る
 1列作った場合、Xとの2列の比較で、d<dmaxとなる確率P(d<dmax)=1/2
 n列作った場合、Xとのn+1列の比較で、d<dmaxとなる確率P(d<dmax)=n/(n+1) (つまり、確率1-ε)
 (n列の場合、dmaxはn列の決定番号の最大値です)
4.さて、dmax+1から先を開けるのを、dmax+1+k(k>=1)から先を開けると改良できる
 そうすると、d番目からdmax+k までの箱が、ごっそり的中できる。kは任意だから、100兆個でも1000兆個でも、ごっそり的中できる
5.あきらかに、これはおかしい。そもそも、見知らぬ "おっさん"ってさ、出題者と何の関係もないでしょ
 さらに、箱1つの実数を当てることさえ難しいのに、100兆個、1000兆個・・ の的中が 確率1-εなんてありえな〜い!

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.055s