[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
564
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/21(土)19:29 ID:gPebnXHG(4/13) AAS
>>563
くっくっくっ
おサルは選択公理が分かっていないなw(゜ロ゜;

定義(下記より)
選択公理:空集合を要素に持たない任意の集合族に対して、各要素(それ自体が集合である)から一つずつその要素を選び、新しい集合を作ることができる

さて、ここに 集合族が有限なら有限集合の族に対する選択公理(以下有限選択公理と称する)、可算なら可算選択公理、可算超えならフルパワー選択公理だ
いま同値類が1つあり代表を1つ選ぶだけなら、有限選択公理で間に合う
同様に、有限n個の同値類から代表をn個を選ぶのも同じく、有限選択公理で間に合う

時枝では、有限n個の同値類から代表をn個を選ぶことができれば、最低限それで十分だ
(もちろん、ヒマなら もっと多くの同値類から代表を選べ。ご苦労だが、必要以上のそれらは 使わんから、無駄だがねw)

(参考)
外部リンク:ja.wikipedia.org
選択公理
(抜粋)
定義
空集合を要素に持たない任意の集合族に対して、各要素(それ自体が集合である)から一つずつその要素を選び、新しい集合を作ることができる。
あるいは同じことであるが、空でない集合の空でない任意の族 A に対して写像 f: A→∪A:= ∪A∈ A であって任意の x∈ A に対し f(x)∈ x なるものが存在する、と写像を用いて言い換えることが出来る(ここで存在が要求される写像 f を選択関数(英語版)という)。これは次の命題と同値である。
{Aλ}λ∈Λ をどれも空集合でないような集合の族とすると、それらの直積も空集合ではない。記号で書けば、
(∀λ ∈ Λ )[A_λ≠ Φ → Π_λ∈ Λ A_λ ≠ Φ .
歴史
集合論の創始者ゲオルク・カントールは、選択公理を自明なものとみなしていた。 実際、有限個の集合からなる集合族であれば、そのそれぞれの集合の中から順に1つずつ元を選び出し、それらを併せて集合とすればよいのであるから、このような操作ができることは自明である。
選択公理の変種
選択公理には様々な変種が存在する。
可算選択公理
有限集合の族に対する選択公理
380
(8): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/08(日)08:34 ID:TTUqgbD+(1/9) AAS
>>370
(転載)
「0.99999……は1ではない その5」
2chスレ:math
>>564
>The Riddleなんて、カンケーない
>時枝記事が否定されれば、それで十分だ

P:The Riddle から、Q:時枝記事の確率1-ε が導かれる
つまり、P→Qだ
対偶:¬Q→¬P
つまり、¬Q:時枝記事の否定→¬P:The Riddleの否定
QED

お解り?
 >>502にあるように
大学教程の確率論より
「確率変数の無限族 X1,X2,・・,Xi,・・において
あるXiが存在して確率1-εで的中できる」とする 数学パズル
には
iid(独立同分布)を仮定すれば、そんなXiは存在しようがないという反例が存在することは自明です
つまり、時枝の数学パズルの「可算無限長数列のシッポの同値類を使った決定番号の大小比較」という手法が否定されるのです
だからの、「¬Q:時枝記事の否定→¬P:The Riddleの否定」なのです

詳しくは
現代数学の系譜 カントル 超限集合論2
2chスレ:math
(時枝記事関連)

おサルさー、あんた 哀れな素人氏相手に「無限がぁ〜!」とかほざいているが
おれからすれば、同じ穴の狢よ くっくっ ww(^^
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.034s