[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
553(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/20(金)11:34 ID:+qJdNaLm(5/8) AAS
<転載>
0.99999……は1ではない その7
2chスレ:math
(抜粋)
79 2020/03/20(金) ID:WMaa4Quj
conglomerabilityの定義を理解した上でPrussの論文を読み直せば、
自説がPrussによって真正面から否定されてると理解できます
80 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/20(金) ID:+qJdNaLm
おサルさん、DR Pruss氏は、mathoverflowの彼の回答の前段で、conglomerabilityを出しているが
(下記引用ご参照)
最後は、”the function is measurable”が不成立だから、”dumb(ダメダメ) strategy”と言っているよ
(下記の通り)
QED
(^^;
(参考)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
DR Pruss氏
(抜粋)
By a conglomerability assumption, we could then conclude that P(X<=Y)=0, which would be absurd as the same reasoning would also show that P(Y<=X)=0.
In general, Mj will be nonmeasurable (one can prove this in at least some cases). We likewise have no reason to think that M is measurable. But without measurability, we can't make sense of talk of the probability that the guess will be correct.
That's a fine argument assuming the function is measurable. But what if it's not?
So there is an extension P′ of P such that P′-almost surely the dumb strategy works. Just let P′ be an extension on which the set of representatives has measure 1 and note that the dumb strategy works on the set of representatives.
外部リンク:www.mdpi.com
Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis
by Paul Bartha
Symmetry 2011, 3(3), 636-652;
554(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/20(金)12:00 ID:+qJdNaLm(6/8) AAS
>>553
DR Pruss氏は下記で、conglomerabilityの正確な意味がいまいち分からんけど
要するに”nonmeasurable”で、測度論的確率から外れているということでしょう (^^;
外部リンク:en.wikipedia.org
Alexander Robert Pruss (born January 5, 1973) is a Canadian mathematician, philosopher, Professor of Philosophy and the Co-Director of Graduate Studies in Philosophy at Baylor University in Waco, Texas.
Pruss graduated from the University of Western Ontario in 1991 with a Bachelor of Science degree in Mathematics and Physics.
After earning a Ph.D. in Mathematics at the University of British Columbia in 1996 and publishing several papers in Proceedings of the American Mathematical Society and other mathematical journals,[4] he began graduate work in philosophy at the University of Pittsburgh.
外部リンク:books.google.co.jp
Infinity, Causation, and Paradox
著者: Alexander R. Pruss
(P76-77 に conglomerabilityの説明があるが、正確な定義は分からないが、
P76に”But typically, where there is no coutable additibity, there is lack of conglomerability(Scervish,Seidenfeld,and Kanade 1984).”
と記されているので、”coutable additibity ”即ち σ-加法性 と密接に関連した(多分”σ-加法性”を拡張した)概念だと思う)
(更に附言すれば、現代の測度論的確率が、σ-加法性をベースに成立っているとすれば、DR Pruss氏の指摘は、要するに”nonmeasurable”で、測度論的確率から外れているということでしょう (^^; )
558(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/21(土)07:53 ID:gPebnXHG(1/13) AAS
>>557
おサルに分かるようには書けないなw
理解力の無いおサルには、正確に書いてもしかたないだろ?w(^^;
mathoverflow(>>553)における 質問者 Denis氏に対する DR Pruss氏の回答が如し
つまり、DR Pruss氏は正確に回答しているが、質問者 Denis氏は ”the function is measurable”が理解できないみたい
” measurable”が分かってないんだな、質問者 Denis氏は
彼が、” measurable”に対する理解を示す発言皆無なんだよw
おサルは、それと同じだよw(゜ロ゜;
573(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/21(土)20:28 ID:gPebnXHG(8/13) AAS
>>568
おサルさー、おまえ mathoverflowの DR Pruss氏議論が分かっていない 質問者 Denis氏そっくりの理解じゃんかw(゜ロ゜;
DR Pruss氏は、”That's a fine argument assuming the function is measurable. But what if it's not?”ってあるよね
で、質問者 Denis氏は、この議論には、全く入れなかった
ただ、壊れたレコードのように
”Our choice of index i is made randomly, but for this we only need the uniform distribution on {0,…,n}. It is made independently of the opponent's choice. ? Denis Dec 17 '13 at 15:21”
を繰返したのだった(^^;
(>>553より参考)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
DR Pruss氏
(抜粋)
By a conglomerability assumption, we could then conclude that P(X<=Y)=0, which would be absurd as the same reasoning would also show that P(Y<=X)=0.
In general, Mj will be nonmeasurable (one can prove this in at least some cases). We likewise have no reason to think that M is measurable. But without measurability, we can't make sense of talk of the probability that the guess will be correct.
That's a fine argument assuming the function is measurable. But what if it's not?
So there is an extension P′ of P such that P′-almost surely the dumb strategy works. Just let P′ be an extension on which the set of representatives has measure 1 and note that the dumb strategy works on the set of representatives.
外部リンク:www.mdpi.com
Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis
by Paul Bartha
Symmetry 2011, 3(3), 636-652;
586(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)09:53 ID:TMbOZsnt(3/22) AAS
>>582
おサル、それ誤読だよ
”misunderstanding”は、下記引用の3)のとこでしょ
でも、面白いね、文献の”philosophical reason”の「 independently」の
”orthodox (Kolmogorovian) probability theory”と異なる見方(哲学だけれど)
(>>553より参考)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
DR Pruss氏
(抜粋)
show 6 more comments
1)Our choice of index i is made randomly, but for this we only need the uniform distribution on {0,…,n}. It is made independently of the opponent's choice. ? Denis Dec 17 '13 at 15:21
2)I was assuming that "independently" has the meaning it does in probability theory (P(AB)=P(A)P(B) and generalizations for σ-fields). But that does require a probabilistic description of the opponent's choice.
Of course, one could mean "independently" here in some non-mathematical causal sense. (And there may be philosophical reason for doing this: fitelson.org/doi.pdf )
Still, mixing the probabilistic with nonprobabilistic concepts might lead to some difficulties, though. ? Alexander Pruss Dec 18 '13 at 15:21
3)ah ok I see where the misunderstanding comes from, it's true that "independently" is ambiguous, because only one random variable is involved here.
But I think it still has a mathematical meaning in the sense "it does not depend on the opponent's choice", namely we have ∃x∀y where x is our strategy and y is our opponent's strategy (i.e. the sequence),
and we still win this game because we can choose devise a (probabilistic) strategy that works on all sequences. ? Denis Dec 19 '13 at 11:54
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.026s