[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
444(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/12(木)07:46 ID:Fux/6iYZ(2/4) AAS
時枝の数当ては、『お釈迦様の手の上の悟空』
(参考 >>362->>7も)
1)お釈迦様の手の大きさをLとします
2)悟空が、飛んだ距離を l とします
3)常に、”l(有限)< L (無限=∞)”です
4)時枝を1列で考えます。可算無限長L(=∞)の列に対し、代表番号dは有限
5)そういう有限dを使った数当ては、出来ないってことです
(^^;
外部リンク:kizuki-delivery.net
毎日の気づき配信
孫悟空とお釈迦様の智慧比べ
2017/02/18 2017/02/20
(抜粋)
画像リンク
皆さんは、孫悟空とお釈迦様の智慧比べの話しをご存じでしょうか。
お釈迦様と孫悟空が神通力比べをした話しですが、孫悟空は、自分の神通力一杯で空を飛んで、これ以上遠いところは無かろうと思ったところに大きな山を見つけました。
そこで、「これは良し、自分がここまで来た証拠をこの山に残してやろう」と思って「悟空参上!」と大きく書きました。戻って来て、お釈迦様にそれを報告した所、お釈迦様が「そなたが書いた言葉は、これか!」と手を広げられたところ、その手の指に「悟空参上!」と書いてあったという話しです。
結局、孫悟空は、仏様の手の平をでられなかったということです
447: 2020/03/12(木)08:52 ID:4k5QcSKk(2/17) AAS
>>444
>4)時枝を1列で考えます。可算無限長L(=∞)の列に対し、代表番号dは有限
あなたの論法はいつもおかしいですね。
複数列作れば確率1-εで当てられるのにわざわざ劣化させて当てられないと主張しても無意味です。
なぜなら時枝先生の問いは「勝つ戦略はあるか?」であって「勝てない戦略はあるか?」ではないからです。
450(8): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)11:19 ID:FZfOcjPG(2/10) AAS
>>444
> 4)時枝を1列で考えます。可算無限長L(=∞)の列に対し、代表番号dは有限
> 5)そういう有限dを使った数当ては、出来ないってことです
下記引用の広中−岡のエピソードの教訓は、
数学は 不必要な条件を落として、抽象化して純化した方が、
見通しが良いということ。数学はそれができる
これを時枝で考えてみると、要するに、時枝の数当ての原理は
「長さLの数列があって、
問題の数列X:X1,X2,・・,Xi,Xi+1・・ において、
同値類の数列Xの属する同値類の代表列rをうまく選んで
r:r1,r2,・・,Xi,Xi+1・・(つまり Xi,Xi+1・・以降が一致)
と出来れば、数当て成功。
しっぽ Xi+1・・を開けて、決定番号d=iとなれば、ri=Xiですから、問題の数列XのXiが分かる」
という理屈です
なので、これをもっと抽象化すれば
決定番号d(=i) <i+mになるように、十分大きな数 i+m を選んで、しっぽの Xi+m・・を見ると
属する同値類が分かり、代表列r:r1,r2,・・,Xi,Xi+1・・が分かり、ri=Xiが分かるという原理です
ですが、問題はそのような、十分大きな数i+mを選ぶことはできないということ
(∵ L=∞ だから (^^; )
これ、>>444-445 『お釈迦様の手の上の悟空』であり、数学的には DR Pruss氏の”conglomerability assumption”による説明です
よって、時枝の数当て手法は、不成立です
QED (^^
(参考)
外部リンク:ja.wikipedia.org
広中平祐
特異点解消問題について、1963年に日本数学会で講演した。その内容は、一般的に考えるのでは問題があまりに難しいから、様々な制限条件を付けた形でまずは研究しようという提案であった。
その時、岡潔が立ち上がり、問題を解くためには、広中が提案したように制限をつけていくのではなく、むしろ逆にもっと理想化した難しい問題を設定して、それを解くべきであると言った。
その後、広中は制限を外して理想化する形で解き、フィールズ賞の受賞業績となる[4]。
467: 2020/03/12(木)19:43 ID:+sBkJatU(1/6) AAS
>>444
>時枝を1列で考えます。
時枝記事の方法は少なくとも2列は必要
>可算無限長L(=∞)の列に対し、代表番号dは有限
そもそも代表番号dは有限だけど
1列で考えたから有限になる、というわけではない
468: 2020/03/12(木)19:44 ID:+sBkJatU(2/6) AAS
>>444
>>有限dを使った数当ては、出来ないってことです
>>445
>それを数学的に説明したのが、下記のDR Pruss氏の
>”conglomerability assumption”による説明です
(中略)
>”自然数の集合Nから、ランダムに任意の元dを選ぶ”という
>ランダムネスの定義が、本当は出来ずに、手品のタネになっている
>決定番号dが、如何にも我々の知っている有限の数の範囲になる
>が如くの錯覚をさせている(本当はここ極限です)
> それが、手品のタネになっている
> 有限の世界なら、d1とd2の大小比較も明確だ
> しかし、無限大の世界では、d1とd2の大小比較は簡単に言えない
> それを、DR Pruss氏は、mathoverflowで述べているのです
Dr.Prussは、
「dが有限でない」(つまりdが自然数にならない)
とは一言も云ってないけど
云えるわけないよ
それは尻尾の同値関係を否定する発言だから
dは自然数
したがって、d1とd2の大小比較は常に可能
(注:自然数の超準モデルを考えても同じ)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.049s