[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
421(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/11(水)07:25 ID:VmLB1T0T(1/5) AAS
>>420
対偶が理解出来ていないのか?(゜ロ゜;
(>>380ご参照)
P:The Riddle から、Q:時枝記事の確率1-ε が導かれる
つまり、P→Qだ
対偶:¬Q→¬P
つまり、¬Q:時枝記事の否定→¬P:The Riddleの否定
QED
対偶は、P→Qの真偽とは無関係に、常に成立するよ
下記の 高校数学の美しい物語 を、どぞ (^^
(ベン図みろ)
(参考)
外部リンク:mathtrain.jp
高校数学の美しい物語
2016/01/05
対偶を用いた証明のいろいろな具体例
「P ならば Q」という命題とその対偶「Q でないならば P でない」という命題の真偽は一致する。
対偶の真偽は一致する
「P ならば Q」という命題について,両方否定してひっくり返したもの「Q でないならば P でない」を対偶と言います。
対偶の真偽が一致することは,ベン図で理解することもできます。
画像リンク
214(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)11:38 ID:YLjNnjPy(4/11) AAS
>>195 補足
私スレ主も、証明を全く読まないわけじゃない
ガロアスレ46 の422(下記)で、PDFを作って貰ったんだ
(参考)
ガロアスレ46
2chスレ:math
422 132人目の素数さん[sage] 2017/11/20
>>421のリンク先の証明は個人的には すんなり頭に入ってこないので、
微分可能な点の方から攻める方針でやってみたら、次の定理が得られた。
定理:f:R → R に対して、B_f={ x∈R|limsup[y→x]|(f(y)−f(x))/(y−x)|<+∞ } と置く。
もし R−B_f が高々可算無限個の疎な閉集合の和で被覆できるならば、f はある開区間の上で
リプシッツ連続である。
この定理を使うと、f:R → R であって、「xが有理数のとき不連続、xが無理数のとき微分可能」
となるものは存在しないことが即座に分かる。一応やってみると、そのような関数 f が存在したとすると、
R−Q = 無理数全体 = (fの微分可能点全体) ⊂ B_f
となるので、
R−B_f ⊂ Q = ∪[p∈Q] { p } …(1)
となる。(1)の右辺は疎な閉集合の可算和だから、上の定理が使えて、f はある開区間(a,b)の上で
リプシッツ連続になる。特に、(a,b)の上で連続になる。QはR上で稠密だから、x∈(a,b)∩Qが取れる。
仮定から、fは点xで不連続であるが、しかしx∈(a,b)より、fは点xで連続であり、矛盾する。
ガロアスレ47
2chスレ:math
593 132人目の素数さん[sage] 2017/12/12
pdf ならスレ主も証明を読む気があるらしいので、そうなると話は一変する。
相手の弁明を聞く気があるなら、イチャモンをつけても、それ単独では誹謗中傷には ならないからだ。
そして、証明を次のレスで投下する(うpろだに上げたのでリンクを張る)。
594 132人目の素数さん[sage] 2017/12/12
以下の pdf に証明を書いた。
外部リンク:www.axfc.net
なるべく行間が無いように、丁寧に証明を書いたつもりである。
なお、「疎な閉集合」は「内点を持たない閉集合」と同じことであるから、
pdf の中では「疎な閉集合」という概念を導入せず、必要な個所では その都度
「内点を持たない閉集合」
という言葉に置き換えた。
(引用終り)
435(1): 2020/03/11(水)19:42 ID:3kv0Qt3e(1/3) AAS
>>421
> P→Qの真偽とは無関係に
なんだから
¬Q→¬Pの真偽とも無関係だろうが
>>414
> 時枝の反例足りえているぞ!! (>>380ご参照)
偽であったら反例にならんだろ
437(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/11(水)20:35 ID:VmLB1T0T(3/5) AAS
>>435
おサル本体(=サイコパス ピエロ(下記ご参照))の ご登場かい?w(゜ロ゜;
まず
(>>421)
"P:The Riddle から、Q:時枝記事の確率1-ε が導かれる
つまり、P→Qだ
対偶:¬Q→¬P
つまり、¬Q:時枝記事の否定→¬P:The Riddleの否定"です(^^;
>>414
> 時枝の反例足りえているぞ!! (>>380ご参照)
偽であったら反例にならんだろ
(引用終り)
分かってないね
1)時枝記事の主張:任意の可算無限数列 X1,X2,・・,Xi,・・ において、あるXiを箱を開けずに 確率1-εで言い当てることができる
2)一方、大学の確率論:ある確率現象によるiid(独立同分布) の可算無限数列 X1,X2,・・,Xi,・・ においては、全てのXiについて、的中確率はp*)である
注 *)コイントスならp=1/2、サイコロ1個ならp=1/6など
3)明らかに、上記の1)と2)とは、矛盾。つまり、2)が正しいなら、1)は不成立。
4)そして、2)は大学教程の確率論 そのままであり、大学教程の確率論の裏付けがあるのです
よって、時枝記事の主張 1)は不成立!!
QED (^^;
(参考:サイコパス ピエロ)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む83
2chスレ:math (サイコパス ピエロの説明)
(>>380ご参照)
P:The Riddle から、Q:時枝記事の確率1-ε が導かれる
つまり、P→Qだ
対偶:¬Q→¬P
つまり、¬Q:時枝記事の否定→¬P:The Riddleの否定
QED
対偶は、P→Qの真偽とは無関係に、常に成立するよ
下記の 高校数学の美しい物語 を、どぞ (^^
(ベン図みろ)
(参考)
外部リンク:mathtrain.jp
高校数学の美しい物語
2016/01/05
対偶を用いた証明のいろいろな具体例
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.042s