[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
34(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/22(日)08:07 ID:jNutOcAm(2/6) AAS
>>33
つづき
あとは、<ノイマン構成>と異なり、<Zermelo構成>で「ω=N(自然数の集合)」以外のωの定義が可能かってことね
<Zermelo構成>では、「0∈1∈2∈3・・・∈n∈・・・→ω」の極限として、ωを定義すれば良い
この論法は、<Zermelo構成>以外の後者関数でも使えるよ
以上
35(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/22(日)08:13 ID:jNutOcAm(3/6) AAS
>>34 補足
これは、下記の極限順序数の定義
「順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)」
と同じかな(^^
外部リンク:ja.wikipedia.org
極限順序数
(抜粋)
特徴付け
極限順序数は他にもいろいろなやり方で定義できる:
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
(引用終り)
39(1): 2019/12/22(日)08:54 ID:dWgKJ6XY(7/14) AAS
>>34
><Zermelo構成>では、
>「0∈1∈2∈3・・・∈n∈・・・」の極限として、
>ωを定義すれば良い
(注、”→ω”は無駄なので削除)
肝心の極限の定義がないので無意味ですね
少なくともZermeloのΩはシングルトンにはなりません
なぜなら、極限順序数の定義に反する”前者”の存在が導かれるから
Ωの要素として
「単調増大する自然数の無限列の項」
をとればいいですが、有限列にはできません
なぜなら列中の最大値が存在してしまい
そこがΩの”前者”になってしまうから
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 2.076s*