[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
251(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/03(金)09:53 ID:ivt0JCXh(2/8) AAS
>>250 参考
下記、「上極限と下極限は(無限大をとることを許せば)必ず存在する」の
”(無限大をとることを許せば)”に、ご注目(^^;
外部リンク:ja.wikipedia.org
上極限と下極限
(抜粋)
性質
数列 (an) の上極限と下極限は(無限大をとることを許せば)必ず存在する。これは極限値が存在するかどうか分からないのと対照的である。
252(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/03(金)10:11 ID:ivt0JCXh(3/8) AAS
>>251 補足
1.完備化という概念がある
2.完備化 (順序集合)(英語版)下記
”Dedekind cut”について、説明されている
3.カントールは、完備化にコーシー列を使ったという(下記)
外部リンク:ja.wikipedia.org
完備化 (順序集合)(英語版)(Dedekind-MacNeille completion へ飛ぶ)
外部リンク:en.wikipedia.org
Dedekind-MacNeille completion
(抜粋)
Examples
If Q is the set of rational numbers, viewed as a totally ordered set with the usual numerical order, then each element of the Dedekind-MacNeille completion of Q may be viewed as a Dedekind cut, and the Dedekind-MacNeille completion of Q is the total ordering on the real numbers, together with the two additional values ±∞.[7]
The construction of the real numbers from the rational numbers is an example of the Dedekind completion of a totally ordered set, and the Dedekind-MacNeille completion generalizes this concept from total orders to partial orders.
外部リンク:ja.wikipedia.org
コーシー列
(抜粋)
コーシー列(コーシーれつ、Cauchy sequence)は、数列などの列で、十分先のほうで殆ど値が変化しなくなるものをいう。
数学史における位置付け
19世紀後半には実数を算術的に定義する方法が盛んに研究され、
その中で現在コーシー列と呼ばれる概念を導入したのがカントールである。
カントールがこの成果を発表したのは1872年で、1821年に発表されたコーシーの収束判定法を満たす数列を用いて実数を定義しようという、当時一般的だった考え方に基づいている。
このコーシーの収束判定法を満たす数列としてコーシー列が用いられ、実数はコーシー列の極限として定義された。
260: 2020/01/03(金)11:29 ID:glmNLmg1(2/11) AAS
>>251
>”(無限大をとることを許せば)”
今なすべきことは「無限大」をどうやって構成するかなので
”(無限大をとることを許せば)”は論点先取の誤り
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.028s