[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
24
(2): 2019/12/22(日)00:29 ID:hH9D3fwr(1) AAS
Ωが次の性質を持つ限りZFCと両立することはできません。

・Fを
x∈F⇔∃x1∋x2∋‥‥∋xn, x1=Ω, xn=x
によって定められる集合とするときFの任意の要素はシングルトンか空集合。
・Ωは有限Zermelo ordinal numberではない。
31: 2019/12/22(日)07:40 ID:dWgKJ6XY(4/14) AAS
>>20 >>24
カッコを外側から内側に無限個つけた集合は正則性公理に反しますね
ただ、これはそもそも順序数でないですけどね
0、−1、−2、・・・は整列集合じゃないですから
33
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/22(日)08:06 ID:jNutOcAm(1/6) AAS
>>24
>Ωが次の性質を持つ限りZFCと両立することはできません。
>・Fを
>x∈F⇔∃x1∋x2∋‥‥∋xn, x1=Ω, xn=x
>によって定められる集合とするときFの任意の要素はシングルトンか空集合。
>・Ωは有限Zermelo ordinal numberではない。

(前スレ>>961より)
外部リンク:ja.wikipedia.org
自然数
(抜粋)
<ノイマン構成>
・任意の集合 a の後者は a と {a} の合併集合として定義される。
 suc (a):=a∪{a}
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
<Zermelo構成>(前スレ>>725より)
他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
(引用終り)

なので、<Zermelo構成>も<ノイマン構成>も
∈-数列
0∈1∈2∈3・・・∈n∈・・・→ω
("→ω"の意味は、ωに向けてずっと続くってことね)
(なお、ωは、超限順序数で、いわゆる”有限”ではない)

で、「0∈1∈2∈3・・・∈n∈・・・→ω」は、<Zermelo構成>も<ノイマン構成>も全く同じ
だから、この<Zermelo構成>を否定することはできません
(∵<Zermelo構成>を否定すると、<ノイマン構成>も同様に否定されるから)

但し、
<ノイマン構成>においては、ω=N(自然数の集合)なので
n∈ω(=N)は、可
というか
<ノイマン構成>なら、任意のm<nで、m∈n成立
(∵<ノイマン構成>では、後者関数の定義が、それ以前の全てを要素からなる集合だから(前スレ966))

一方、<Zermelo構成>においては、もともと、任意のm<nで、m∈n不成立
(∵<Zermelo構成>では、後者関数の定義が、異なるため)
だから、もともと、”n not∈ω(=x1=Ωかな)”なのです(nは、任意の自然数)
これは、後者関数の定義の問題なのです
(なので、<Zermelo構成>もZFC内で成立します)

つづく
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.034s