[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
445: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/12(木) 07:49:25.37 ID:Fux/6iYZ それを数学的に説明したのが、下記のDR Pruss氏の”conglomerability assumption”による説明です(^^; 現代数学の系譜 工学物理雑談 古典ガロア理論も読む83 https://rio2016.5ch.net/test/read.cgi/math/1581243504/877 分かり易く例えで説明する ・ランダムを直感的に考えて、決定番号dが属する自然数の集合Nから、ランダムに任意の元dを選ぶことを考えよう ・さて、我々が日常生活し考えている100兆くらいの数は、自然数N全体のほんの一部にすぎない いわゆる天文学的に大きな数も また同じで、所詮有限にすぎない ・コンピュータ内で数を扱うとして、まともに固定小数点の数として扱えば、桁あふれを起こして、コンピュータメモリ内に収まらない 天文学では、指数を使ったりするけれども、>>876のように極限を考えると、それでも 極限の途中で、指数でさえ コンピュータメモリ内に収まらない ・それが、>>876のように、無限大超自然数 ω を考えれば、はっきり見えるってわけです ・戻ると、”自然数の集合Nから、ランダムに任意の元dを選ぶ”という ランダムネスの定義が、本当は出来ずに、手品のタネになっている ・つまり、ある可算無限数列X=(x1,x2,・・・)に対して、問題の数列Xを知らずに、同値類の代表r=(r1,r2,・・・)を選び、決定番号dが決まる 決定番号dが、如何にも我々の知っている有限の数の範囲になるが如くの錯覚をさせている(本当はここ極限です) それが、手品のタネになっている 有限の世界なら、d1とd2の大小比較も明確だ ・しかし、無限大の世界では、d1とd2の大小比較は簡単に言えない ・それを、DR Pruss氏は、mathoverflowで述べているのです (参考) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13 DR Pruss氏 By a conglomerability assumption, we could then conclude that P(X<=Y)=0, which would be absurd as the same reasoning would also show that P(Y<=X)=0. http://www.mdpi.com/2073-8994/3/3/636 Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis by Paul Bartha Symmetry 2011, 3(3), 636-652; http://rio2016.5ch.net/test/read.cgi/math/1576852086/445
450: 現代数学の系譜 雑談 ◆e.a0E5TtKE [sage] 2020/03/12(木) 11:19:50.54 ID:FZfOcjPG >>444 > 4)時枝を1列で考えます。可算無限長L(=∞)の列に対し、代表番号dは有限 > 5)そういう有限dを使った数当ては、出来ないってことです 下記引用の広中−岡のエピソードの教訓は、 数学は 不必要な条件を落として、抽象化して純化した方が、 見通しが良いということ。数学はそれができる これを時枝で考えてみると、要するに、時枝の数当ての原理は 「長さLの数列があって、 問題の数列X:X1,X2,・・,Xi,Xi+1・・ において、 同値類の数列Xの属する同値類の代表列rをうまく選んで r:r1,r2,・・,Xi,Xi+1・・(つまり Xi,Xi+1・・以降が一致) と出来れば、数当て成功。 しっぽ Xi+1・・を開けて、決定番号d=iとなれば、ri=Xiですから、問題の数列XのXiが分かる」 という理屈です なので、これをもっと抽象化すれば 決定番号d(=i) <i+mになるように、十分大きな数 i+m を選んで、しっぽの Xi+m・・を見ると 属する同値類が分かり、代表列r:r1,r2,・・,Xi,Xi+1・・が分かり、ri=Xiが分かるという原理です ですが、問題はそのような、十分大きな数i+mを選ぶことはできないということ (∵ L=∞ だから (^^; ) これ、>>444-445 『お釈迦様の手の上の悟空』であり、数学的には DR Pruss氏の”conglomerability assumption”による説明です よって、時枝の数当て手法は、不成立です QED (^^ (参考) https://ja.wikipedia.org/wiki/%E5%BA%83%E4%B8%AD%E5%B9%B3%E7%A5%90 広中平祐 特異点解消問題について、1963年に日本数学会で講演した。その内容は、一般的に考えるのでは問題があまりに難しいから、様々な制限条件を付けた形でまずは研究しようという提案であった。 その時、岡潔が立ち上がり、問題を解くためには、広中が提案したように制限をつけていくのではなく、むしろ逆にもっと理想化した難しい問題を設定して、それを解くべきであると言った。 その後、広中は制限を外して理想化する形で解き、フィールズ賞の受賞業績となる[4]。 http://rio2016.5ch.net/test/read.cgi/math/1576852086/450
465: 現代数学の系譜 雑談 ◆e.a0E5TtKE [sage] 2020/03/12(木) 18:04:25.81 ID:FZfOcjPG >>445 補足 DR Pruss氏は、mathoverflowの回答で、下記を述べている 即ち、「the function is measurable.」ならば 良いが、そうでないときは、ダメだという 実際、コイントス(=coin flips)で、Ω={0,1}^Nなのに、実数の数列の同値類と代表なら、”guess π”とかなって それって、”Intuitively this seems a really dumb strategy. ”じゃんと、DR Pruss氏は いう (^^; (参考) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13 DR Pruss氏 (抜粋) Here's an amusing thing that may help see how measurability enters into these things. Consider a single sequence of infinitely many independent fair coin flips. Our state space is Ω={0,1}^N, corresponding to an infinite sequence (Xi)^∞ i=0 of i.i.d.r.v.s with P(Xi=1)=P(Xi=0)=1/2. That's a fine argument assuming the function is measurable. If so, then guess according to the representative. If not, then guess π. (Yes, I realize that π not∈{0,1}.) Intuitively this seems a really dumb strategy. http://rio2016.5ch.net/test/read.cgi/math/1576852086/465
468: 132人目の素数さん [] 2020/03/12(木) 19:44:17.54 ID:+sBkJatU >>444 >>有限dを使った数当ては、出来ないってことです >>445 >それを数学的に説明したのが、下記のDR Pruss氏の >”conglomerability assumption”による説明です (中略) >”自然数の集合Nから、ランダムに任意の元dを選ぶ”という >ランダムネスの定義が、本当は出来ずに、手品のタネになっている >決定番号dが、如何にも我々の知っている有限の数の範囲になる >が如くの錯覚をさせている(本当はここ極限です) > それが、手品のタネになっている > 有限の世界なら、d1とd2の大小比較も明確だ > しかし、無限大の世界では、d1とd2の大小比較は簡単に言えない > それを、DR Pruss氏は、mathoverflowで述べているのです Dr.Prussは、 「dが有限でない」(つまりdが自然数にならない) とは一言も云ってないけど 云えるわけないよ それは尻尾の同値関係を否定する発言だから dは自然数 したがって、d1とd2の大小比較は常に可能 (注:自然数の超準モデルを考えても同じ) http://rio2016.5ch.net/test/read.cgi/math/1576852086/468
479: 132人目の素数さん [] 2020/03/12(木) 21:51:52.48 ID:4k5QcSKk >>445 >・戻ると、”自然数の集合Nから、ランダムに任意の元dを選ぶ”という ランダムネスの定義が、本当は出来ずに、手品のタネになっている 嘘はいけませんね。時枝証明のどこで自然数の集合Nからランダムに元を選んでいると? {1,2,...,100} からなら選んでますけどね。 http://rio2016.5ch.net/test/read.cgi/math/1576852086/479
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.030s