[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
365: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/01(日) 11:42:51.03 ID:siseuOIi >>364 補足 この話は、過去スレで、ジムの数学徒氏が書いているが、集合の可測非可測ではなく、 「時枝の戦略関数が可測かどうか」と、「確率論の公理の要請」を満たせるかどうか? が、本質なんだ。で、彼は下記で、”満たせない”ということを証明しているのです(^^; (参考) 現代数学の系譜 工学物理雑談 古典ガロア理論も読む80 https://rio2016.5ch.net/test/read.cgi/math/1578091012/271 (抜粋) 271 2020/01/10 ID:jmw8DMZb [9/12] さて時枝が記事の中での定義では戦略に用いられる関数が可測とは限らないというのはまぁ間違いない。 そこで時枝戦略をもう少し詳しく検証する。 改めて>>235。 時枝の与えた戦略関数はDの選択として例えば D:=max{d(y),d(z)}+1 t:=r(C(x))[D] をとればよいというもの。 この確率変数が求める条件を満たす理由が P(t=x[D]) ≧P(t=x[D]|d(x)≦D)P(d(x)≦D) ≧1×2/3 という式変形により保証されるというもの。 よって結局確率変数d(x)などが満たしていなければならない条件とは (1) P(d(x)>d(y),d(z))≦1/3。 (2) P(∀i≧D x[i]=r(C(x))[i] | d(x)≦D)=1 である。 この2つの条件が満たされない限り時枝の議論は成立しない。 ところがこの(2)の条件は確率論の公理の要請に反してしまう。 何故ならば(2)を認めるならば任意のkに対して P(∀i≧k x[i]=y[i] | d(x)≦k ∧ d(y)≦k)=1 が満たされなければならないが、一方で P(∀i≧k x[i]=y[i] | d(x)≦k ∧ d(y)≦k)P(d(x)≦l∧d(y)≦k) = P(∀i≧k x[i]=y[i] ∧ d(x)≦k ∧ d(y)≦k) ≦ P(∀i≧k x[i]=y[i]) =0 となってしまいP(d(x)≦k∧d(y)≦k)は任意の定数kに対して0になる事が要請されてしまう。 つまりこの二つの条件を満たす確率変数は絶対に取る事ができない、すなわち時枝記事の定義の方法がまずいのではなく、そもそも時枝戦略を構成する関数はその中核である条件(1),(2)を要請してしまうと可測関数にはなり得ない事がわかる。 というわけで時枝記事を数学的に正当化する手段は少なくとも確率論の中にはない。 確率論の技術以外に時枝記事を正当化する方法がある可能性はもちろん否定しません。 あるならどうぞ提出して下さいというところですかね。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1576852086/365
366: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/01(日) 12:15:16.77 ID:siseuOIi >>365 追加 これも、追加しておく 現代数学の系譜 工学物理雑談 古典ガロア理論も読む80 https://rio2016.5ch.net/test/read.cgi/math/1578091012/273 273 名前:132人目の素数さん[sage] 投稿日:2020/01/10(金) 22:31:15.46 ID:jmw8DMZb [10/12] あ、ちょっと間違い見つけた。 ま、いいや、ちゃんと確率論勉強した事ある人なら直せるだろうし。 そもそも時枝記事の不十分性を指摘するだけなら>>237-238で終わってるし。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1576852086/366
368: 132人目の素数さん [] 2020/03/01(日) 15:32:09.01 ID:kOlRgtOi >>365 >よって結局確率変数d(x)などが満たしていなければならない条件とは d(x) は定数なので確率変数になり得ません。 時枝戦略における確率変数は 「さて, 1〜100 のいずれかをランダムに選ぶ.」 から分かる通り k∈{1,2,...,100} です。確率分布は離散一様分布となります。 時枝戦略を論ずるなら時枝戦略を正しく理解することから始めましょう。(^^; 尚、The Riddle には確率変数そのものが存在しません。確率を一切使っていないので。 あなたは The Riddle の成立は認めるんですか?逃げ回ってないで答えて下さい。(^^; http://rio2016.5ch.net/test/read.cgi/math/1576852086/368
370: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 2020/03/01(日) 23:18:18.57 ID:siseuOIi >>365-366 補足 現代数学の系譜 工学物理雑談 古典ガロア理論も読む80 https://rio2016.5ch.net/test/read.cgi/math/1578091012/50-51 (抜粋) 時枝問題(数学セミナー201511月号の記事) 可算無限個ある.箱それぞれに,私が実数を入れる. 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている. 但しもっときびしい同値関係を使う. 実数列の集合 R^Nを考える. s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版). 念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する. 〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく. 任意の実数列s に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ. sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す. (引用終り) 1.可算無限長の実数列の集合 R^N のしっぽの同値類分類で、1つの同値類Eの集合の濃度は非可算であることは、自明だ 2.だから、同値類E中に、1つの決定番号に対し、その決定番号を持つ 非可算の数列 s,s',・・たちが含まれる 2.さて、決定番号nとすると、nから先のしっぽは 代表rと一致するが、先頭からn-1までは自由で、n-1次元空間の1点(s1,s2,・・,sn-1)を選ぶことに相当する 3.従って、問題の数列sと代表数列rから決まる決定番号n=dは、裾が発散する超ヘビーな(裾の超重い)分布になるので、決定番号d1,d2の大小の確率計算はできない 4.このことを、確率論の公理の要請の点から証明したのが、ジムの数学徒氏の証明( >>365-366)です (参考) http://www.orsj.or.jp/queue/contents/14tu_masuyama.pdf 第8回「学生・初学者のための待ち行列チュートリアル」 2014年6月21日 Big Queues ? 裾の重い分布と希少事象確率 ? 増山 博之 (京都大学 大学院情報学研究科) http://rio2016.5ch.net/test/read.cgi/math/1576852086/370
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.039s