[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
253: 【最底辺】 【225円】 [sage] 2020/01/03(金) 10:22:08.16 ID:/G0ULS+T その概念を最後は持ち出すだろうとはおもってたけどダメですよ。 今問題になっているのはいわゆる1,2,‥の上極限として 極限が存在するとした議論が矛盾しないのか? ではなく 上極限としてどのような集合をあてがうべきなのか を議論しているのだから。 上極限が存在し得ないならあなたの言うようにNeumann流のあてがい方だろうが、Zermelo流のあてがい方だろうが矛盾しますが、今はそんな事を議論しているのではなく、あなたの主張である Zermelo流ではωにあてがわれる集合Ωとしては Ω自身も、その元も、そのまた元も、‥ どこまで行ってもsingletonしか現れないものがあてがわれる。 その存在を認めてもZFCの公理となんら矛盾しない。 という事が問題になっているのだから。 http://rio2016.5ch.net/test/read.cgi/math/1576852086/253
255: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2020/01/03(金) 10:49:20.99 ID:ivt0JCXh >>253 おつです 岡潔(下記) 制限をつけていくのではなく、むしろ逆にもっと理想化した難しい問題を設定して、それを解くべきであると言った これにならって、Neumann流、Zermelo流に拘らずに、もっと一般に後者関数を考えるべき そうすれば、自然に後者関数のn→∞の極限の概念に到達するだろう その後で、個別の後者関数に応じて、極限によって得られる集合がどのようなものかを考えるべし(^^; (下記、ペアノの公理もご参照) https://ja.wikipedia.org/wiki/%E5%BA%83%E4%B8%AD%E5%B9%B3%E7%A5%90 広中平祐 (抜粋) 特異点解消問題について、1963年に日本数学会で講演した。その内容は、一般的に考えるのでは問題があまりに難しいから、様々な制限条件を付けた形でまずは研究しようという提案であった。 その時、岡潔が立ち上がり、問題を解くためには、広中が提案したように制限をつけていくのではなく、むしろ逆にもっと理想化した難しい問題を設定して、それを解くべきであると言った。 その後、広中は制限を外して理想化する形で解き、フィールズ賞の受賞業績となる[4]。 (>>152より) (参考) https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E3%81%AE%E5%85%AC%E7%90%86 ペアノの公理 (抜粋) 任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。 存在と一意性 集合論における標準的な構成によって、ペアノシステムの条件を満たす集合が存在することを示せる。 まず、後者関数を定義する; 任意の集合 a に対してその後者を suc(a) := a ∪ {a} と定義する。 集合 A が後者関数に関して閉じているとき、つまり 「a が A の元であるならば suc(a) も A の元である」が成り立つときに、 A は帰納的集合であるという。 任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。 一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理) 二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1576852086/255
262: 132人目の素数さん [] 2020/01/03(金) 11:38:52.85 ID:glmNLmg1 >>253 >今問題になっているのは >1,2,‥の上極限としてどのような集合をあてがうべきなのか その通り >今は、あなたの主張である >Zermelo流ではωにあてがわれる集合Ωとしては >Ω自身も、その元も、そのまた元も、‥ >どこまで行ってもsingletonしか現れないものがあてがわれる。 >その存在を認めてもZFCの公理となんら矛盾しない。 >が問題になっているのだから。 その通り まずΩがsingletonだというだけで 極限順序数であることと矛盾する Ωの唯一つの要素がΩの前者になってしまうから Ωの前者、さらにその前者・・・と遡れると 当然正則性公理と矛盾するが、すでに 前者が存在するだけで矛盾する 要するにΩが存在するとしても その要素は唯一ではない さらにいえば有限個でもない なぜなら要素中の最大値が存在すれば それがΩの前者になってしまうから http://rio2016.5ch.net/test/read.cgi/math/1576852086/262
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.034s