[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
63
(6): 2019/12/25(水)12:08 ID:xYwdBxRF(1/3) AAS
>>58
>では位相空間はなにに設定するのですか?
>近傍族はなんですか?

ほいよ(^^
>>35より再録)
外部リンク:ja.wikipedia.org
極限順序数
(抜粋)
特徴付け
極限順序数は他にもいろいろなやり方で定義できる:
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
(引用終り)

"順序位相(英語版)"
より、下記
まあ、確かに、 (a,∞)とか”∞”が定義されていないと、
循環論法になるけど、
”∞”が先に別の仕方で定義されていれば、これで良いだろ

外部リンク:en.wikipedia.org
Order topology
(抜粋)
In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.
If X is a totally ordered set, the order topology on X is generated by the subbase of "open rays"
(a,∞)={x | a<x}}
(-∞,b)={x | x<b}}(
for all a, b in X. Provided X has at least two elements, this is equivalent to saying that the open intervals
(a,b)={x | a<x<b}}
together with the above rays form a base for the order topology. The open sets in X are the sets that are a union of (possibly infinitely many) such open intervals and rays.
A topological space X is called orderable if there exists a total order on its elements such that the order topology induced by that order and the given topology on X coincide. The order topology makes X into a completely normal Hausdorff space.
The standard topologies on R, Q, Z, and N are the order topologies.

Contents
1 Induced order topology
2 An example of a subspace of a linearly ordered space whose topology is not an order topology
3 Left and right order topologies
4 Ordinal space
5 Topology and ordinals
5.1 Ordinals as topological spaces
64
(2): 2019/12/25(水)12:17 ID:xYwdBxRF(2/3) AAS
>>63 補足

1.確かに、”公理的”に、自然数Nから、続いて順序数ωを定義していくときに、ノイマンの後者関数が一番すっきりしている
2.だが、後者関数の選び方には、他の流儀もあるという
3.順序数ωは、本質的に極限順序数であり、極限で定義することは、おかしなことはなにもない(>>63
4.いま問題になっていることは、このように、ノイマンの後者関数以外を使った場合に、極限でωを定義したときに、正則性公理に反するかどうかだ
5.それは「反しない」というのが私の主張ですよ

外部リンク:ja.wikipedia.org
自然数
(抜粋)
<ノイマン構成>
・任意の集合 a の後者は a と {a} の合併集合として定義される。
 suc (a):=a∪{a}
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
<Zermelo構成>(前スレ>>725より)
他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
67
(1): 2019/12/25(水)19:06 ID:xYwdBxRF(3/3) AAS
>>65
(>>57より再録)
確かに、n→∞の部分で下手すると循環論法だが
しかし、公理的な構成という枠を外せば(つまり、”∞”の構成が別の手段で終わった後で)
いろんな後者関数の極限が定義できる
数学として普通だよ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.041s