[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
364
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/01(日)11:35 ID:siseuOIi(1/5) AAS
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80
2chスレ:math
(抜粋)
数学セミナー201511月号P37 時枝記事に、次の一文がある
「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」
(引用終り)

ここも、時枝先生は間違っている!!
選択公理とは、(下記)集合の族(すなわち、集合の集合)があって、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというもの
集合の族が、
・有限のとき、有限集合の族に対する選択公理
・可算(無限)のとき、可算集合の族に対する選択公理
・集合の族に制限がないとき、連続無限以上に適用できるフルパワー選択公理
となる

時枝記事で、2列で考える
本当に必要な代表は、問題の2列の同値類の代表であって、最低2つの代表で足りる
だから、数列のシッポが分かって、問題の同値類が2つに絞り込めれば、たった2つの代表で、時枝の議論は完結する(他の代表は使わない)
だから、たった2つの代表だから、”非可測になる”なんて無関係で、話が完全に”すべっている”よね

外部リンク:ja.wikipedia.org
選択公理
(抜粋)
選択公理(せんたくこうり、英: axiom of choice、選出公理ともいう)とは公理的集合論における公理のひとつで、どれも空でないような集合を元とする集合(すなわち、集合の集合)があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるというものである。1904年にエルンスト・ツェルメロによって初めて正確な形で述べられた[1]。

7 選択公理の変種
7.1 可算選択公理
7.2 有限集合の族に対する選択公理
365
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/01(日)11:42 ID:siseuOIi(2/5) AAS
>>364 補足
この話は、過去スレで、ジムの数学徒氏が書いているが、集合の可測非可測ではなく、
「時枝の戦略関数が可測かどうか」と、「確率論の公理の要請」を満たせるかどうか?
が、本質なんだ。で、彼は下記で、”満たせない”ということを証明しているのです(^^;

(参考)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80
2chスレ:math
(抜粋)
271 2020/01/10 ID:jmw8DMZb [9/12]
さて時枝が記事の中での定義では戦略に用いられる関数が可測とは限らないというのはまぁ間違いない。
そこで時枝戦略をもう少し詳しく検証する。
改めて>>235
時枝の与えた戦略関数はDの選択として例えば
D:=max{d(y),d(z)}+1
t:=r(C(x))[D]
をとればよいというもの。
この確率変数が求める条件を満たす理由が
P(t=x[D])
≧P(t=x[D]|d(x)≦D)P(d(x)≦D)
≧1×2/3
という式変形により保証されるというもの。
よって結局確率変数d(x)などが満たしていなければならない条件とは
(1) P(d(x)>d(y),d(z))≦1/3。
(2) P(∀i≧D x[i]=r(C(x))[i] | d(x)≦D)=1
である。
この2つの条件が満たされない限り時枝の議論は成立しない。
ところがこの(2)の条件は確率論の公理の要請に反してしまう。
何故ならば(2)を認めるならば任意のkに対して
P(∀i≧k x[i]=y[i] | d(x)≦k ∧ d(y)≦k)=1
が満たされなければならないが、一方で
P(∀i≧k x[i]=y[i] | d(x)≦k ∧ d(y)≦k)P(d(x)≦l∧d(y)≦k)
= P(∀i≧k x[i]=y[i] ∧ d(x)≦k ∧ d(y)≦k)
≦ P(∀i≧k x[i]=y[i])
=0
となってしまいP(d(x)≦k∧d(y)≦k)は任意の定数kに対して0になる事が要請されてしまう。
つまりこの二つの条件を満たす確率変数は絶対に取る事ができない、すなわち時枝記事の定義の方法がまずいのではなく、そもそも時枝戦略を構成する関数はその中核である条件(1),(2)を要請してしまうと可測関数にはなり得ない事がわかる。
というわけで時枝記事を数学的に正当化する手段は少なくとも確率論の中にはない。
確率論の技術以外に時枝記事を正当化する方法がある可能性はもちろん否定しません。
あるならどうぞ提出して下さいというところですかね。
(引用終り)
366
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/01(日)12:15 ID:siseuOIi(3/5) AAS
>>365 追加

これも、追加しておく

現代数学の系譜 工学物理雑談 古典ガロア理論も読む80
2chスレ:math
273 名前:132人目の素数さん[sage] 投稿日:2020/01/10(金) 22:31:15.46 ID:jmw8DMZb [10/12]
あ、ちょっと間違い見つけた。
ま、いいや、ちゃんと確率論勉強した事ある人なら直せるだろうし。
そもそも時枝記事の不十分性を指摘するだけなら>>237-238で終わってるし。
(引用終り)
370
(7): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/01(日)23:18 ID:siseuOIi(4/5) AAS
>>365-366 補足
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80
2chスレ:math
(抜粋)
時枝問題(数学セミナー201511月号の記事)
可算無限個ある.箱それぞれに,私が実数を入れる.
 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている.
但しもっときびしい同値関係を使う.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版).
念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
任意の実数列s に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ.
sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す.
(引用終り)

1.可算無限長の実数列の集合 R^N のしっぽの同値類分類で、1つの同値類Eの集合の濃度は非可算であることは、自明だ
2.だから、同値類E中に、1つの決定番号に対し、その決定番号を持つ 非可算の数列 s,s',・・たちが含まれる
2.さて、決定番号nとすると、nから先のしっぽは 代表rと一致するが、先頭からn-1までは自由で、n-1次元空間の1点(s1,s2,・・,sn-1)を選ぶことに相当する
3.従って、問題の数列sと代表数列rから決まる決定番号n=dは、裾が発散する超ヘビーな(裾の超重い)分布になるので、決定番号d1,d2の大小の確率計算はできない
4.このことを、確率論の公理の要請の点から証明したのが、ジムの数学徒氏の証明( >>365-366)です

(参考)
外部リンク[pdf]:www.orsj.or.jp
第8回「学生・初学者のための待ち行列チュートリアル」 2014年6月21日
Big Queues ? 裾の重い分布と希少事象確率 ?
増山 博之
(京都大学 大学院情報学研究科)
371
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/01(日)23:32 ID:siseuOIi(5/5) AAS
>>364 補足

選択公理を必要としないことは、下記のHart氏 PDFにも、
”Consider the following two-person game game2:”として、提示されているよ(^^

Hart氏 PDF 外部リンク[pdf]:www.ma.huji.ac.il
(抜粋)
A similar result, but now without using the Axiom of Choice.2
Consider the following two-person game game2:

注:2^Due to Phil Reny
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.033s