[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
482(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)07:36 ID:nz3HyF4S(1/5) AAS
>>480
>「自然数の集合Nからランダムに元を選ぶ」
>記事にそんなことが書いてあれば速攻で問題になります。馬鹿も休み休み言って下さいね。
(>>450より)
下記引用の広中−岡のエピソードの教訓は、
数学は 不必要な条件を落として、抽象化して純化した方が、
見通しが良いということ。数学はそれができる
(引用終り)
そこで、時枝記事の原理を抽象化して、「数列のしっぽの同値類と代表と決定番号から、ある箱Xiの数を確率1-εで的中できる」理論としました
こう抽象化すると、箱に入れる数は、実数でなくとも良いことが分かる
そして、複素数でも十六元数でも、あるいはそれ以外の多元数にでも、この原理が適用できることは、あきらかですねw(^^;
(参考)
外部リンク:ja.wikipedia.org
広中平祐
特異点解消問題について、1963年に日本数学会で講演した。その内容は、一般的に考えるのでは問題があまりに難しいから、様々な制限条件を付けた形でまずは研究しようという提案であった。
その時、岡潔が立ち上がり、問題を解くためには、広中が提案したように制限をつけていくのではなく、むしろ逆にもっと理想化した難しい問題を設定して、それを解くべきであると言った。
その後、広中は制限を外して理想化する形で解き、フィールズ賞の受賞業績となる[4]。
483(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)08:03 ID:nz3HyF4S(2/5) AAS
>>476 補足
(引用開始)
で、例えば 十六元数は、「その全体はしばしば S で表される」らしい(下記)
時枝にならい 十六元数の可算無限長の数列を作ります
時枝理論を適用して、十六元数列 S:S1,S2,・・Si,・・ で、数列のしっぽの同値類を、実数Rと同様に作り、代表からSiを確率1-εで的中できま〜す!
(時枝理論が正しければねぇ〜ww(^^; )
(引用終り)
1)可算長の十六元数列 S:S1,S2,・・Si,・・ で、数列のしっぽの同値類を、実数Rの列と同様に作ります
2)そうすると、数列の しっぽの部分のみ実数という同値類が考えられます
S':S1,S2,・・Si,・・,rj,rj+1,・・ とします (rj,rj+1などは実数。S1,S2などは実数ではない十六元数です)
3)この同値類の代表として 上記S'を選べば、しっぽの部分が実数でも、代表を使う数当ての候補 Sdに 十六元数が出てくる可能性ありです
4)そうすると、明らかに、十六元数の数列を使うことは、おかしいと分かる
つまり、出題が実数列なら、それを十六元数の数列として扱うことは、不適切です。実数列の同値類を使うべき
5)同じことが、>>466のコイントス {0,1}を、実数Rの数列として扱うことについても言える
つまり、DR Pruss氏が、mathoverflowの回答で指摘しているように
(>>465より)
コイントス(=coin flips)で、Ω={0,1}^Nなのに、実数の数列の同値類と代表なら、”guess π”とかなって
それって、”Intuitively this seems a really dumb strategy. ”じゃんということ(下記)
6)結局、実数の「数列のしっぽの同値類と代表と決定番号から、ある箱Xiの数を確率1-εで的中できる」理論なんて時枝記事は、おかしいと分かる
QED
(^^;
(参考)
外部リンク:ja.wikipedia.org
十六元数
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
DR Pruss氏
(抜粋)
If not, then guess π. (Yes, I realize that π not∈{0,1}.)
Intuitively this seems a really dumb strategy.
506: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)20:28 ID:nz3HyF4S(3/5) AAS
>>497
>現代数学の系譜 雑談=哀れな素人=ネカマ=ぷっ=サル石といったところか
なるほどねー
みんな同じ穴の狢だと
なっと〜く ww(^^
511(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)21:03 ID:nz3HyF4S(4/5) AAS
>>490 補足
包含関係例:
コイントス {0,1}^N ⊂ サイコロ一つ{0,1,・・5}^N ⊂ 自然数列 N^N ⊂ 実数列R^N ⊂ 複素数列Z^N ⊂ 十六元数列S^N
注)サイコロ一つ”{0,1,・・5}^N”は、包含関係を分り易くするために、{1,2,・・6}^Nを書き換えた
コイントス {0,1}^Nは、ベルヌーイ列(Bernoulli sequence)(下記)であり、{0,1}は確率現象としては、最小でしょう
( 集合{0}で 確率1 では、あまり意味がないでしょうから)
さて、時枝先生の論法は、「大は小を兼ねる」で、ベルヌーイ列{0,1}^Nでも、実数列として扱って R^N として、確率1-ε で的中できるという
ならば、「大は小を兼ねる」で、十六元数列S^Nの同値類を使えば、ベルヌーイ列{0,1}^Nから複素数列Z^Nまで、なんでもござれで、確率1-ε
でも、それって、ベルヌーイ列{0,1}^N の推測候補に、Si(十六元数)が上げられるという、バカさ加減
それって、おかしいよね〜ww(^^;
(参考)
外部リンク:ja.wikipedia.org
ベルヌーイ過程
(抜粋)
ベルヌーイ過は、2つの値を取る独立な確率変数列からなる離散時間の確率過程である。ベルヌーイ過程とは、いわばコイントスであるが、そのコインは公平つまり裏と表の出る確率が等しいものに限定されない。
定義
ベルヌーイ過程は、離散時間の確率過程であり、有限または無限の独立な確率変数列 X1, X2, X3,... からなる。この確率変数列について、次が成り立つ。
・それぞれの i について、Xi の値は 0 か 1 である。
・i の全ての値について、Xi = 1 となる確率 p は常に同じである。
換言すれば、ベルヌーイ過程は独立していて確率分布が同じなベルヌーイ試行の列である。個々の Xi のとりうる2つの値を「成功; success」と「失敗; failure」と呼ぶこともある。
ベルヌーイ列
確率空間 (ω ,Pr)上に定義されたベルヌーイ過程があるとき、 ω ∈ Ω 毎に次の整数の列が対応する。
Z^ω={n∈ Z :Xn(ω )=1}
これをベルヌーイ列(Bernoulli sequence)と呼ぶ。従って例えば、 ω がコイントスの列を表すとき、そのベルヌーイ過程はコイントスの結果を整数の列で表したものである。
ほとんど全てのベルヌーイ列は、エルゴード列である。
514(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)21:34 ID:nz3HyF4S(5/5) AAS
>>511 補足
・ベルヌーイ列 {0,1}^Nを当てるのに、実数列R^Nの類別を作るとか、それって バカげているし
・例えば、ベルヌーイ列 {0,1}^Nを当てるのだったら、有理数列 Q^Nでもなんでも良いのですよね?
・ところが、時枝理論では、十六元数列S^N でも使えて、同じく確率1-εになるという
・なんで? どんどん ベルヌーイ列 {0,1}^Nから、アサッテの方に行って、同じく確率1-εだと??(゜ロ゜;
・それって、まさに、”If not, then guess π. (Yes, I realize that π not∈{0,1}.)
Intuitively this seems a really dumb strategy. (by DR Pruss >>483) (^^;
QED
(゜ロ゜;”
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.035s