[過去ログ]
現代数学の系譜 カントル 超限集合論2 (1002レス)
現代数学の系譜 カントル 超限集合論2 http://rio2016.5ch.net/test/read.cgi/math/1576852086/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
403: 132人目の素数さん [sage] 2020/03/09(月) 18:44:13.42 ID:nXOl+Xae >>401 出題者がコイントスで数字を選んだとしても実数を箱に入れるルールに反しない 回答者はコイントスで選んだことを知らなければ当てる確率は0 箱を1つ残して開けたら全て0か1であったら回答者はコイントスで数字を選んだと仮定する この仮定が正しい確率も数当ての成功確率に関係する コイントスで選んだ数字が入った箱をCで書くと C, C, C, ... , Xi, C, C, ... この数列も「独立同分布」ならXiはCにならないといけないですよ この場合は数を当てているわけではないが箱をあけることにより数字を当てる確率は 0から1/2に増加しているんです これも数当てとやっていることは同じなんだけれどもこちらにクレームをつけないのはおかしくないですか http://rio2016.5ch.net/test/read.cgi/math/1576852086/403
409: 132人目の素数さん [sage] 2020/03/09(月) 22:01:01.95 ID:nXOl+Xae >>408 > しかし、時枝では、確率現象1/nの依存性が全くなく、どんな確率現象でも、 > 1-εで的中できるという。それはおかしいよね 「どんな確率現象でも」は間違い 依存性がないように見えるのは可算無限個の箱全てに実数を入れるという情報 があるから それを見落として「どんな確率現象でも」と間違えると上のような考えに陥る (箱に実数を入れるルールで箱に実数が入っている確率は1) 実数が入っている箱をRで表すと R, R, ... , Xi, R, R, ... Xi = Rとなる確率は? この場合に箱に入れるのが実数でなくてよい(たとえば複素数)のなら 当然上記の依存性が現れる 回答者は可算無限個の箱全てに実数を入れるという情報を持っているので 数当てにR^Nの同値類(と代表元)を正しく用いることができる R^Nであることを間違うことはない 袋の中の代表元の1つをrで表して代表元の数字が入っている箱をそのままrで表すと r, r, ... , Xi, r, r, ... であれば確率1であてることができる 先頭から有限個がrでない場合は s, s, ... , s, r, r, ... と必ずなる この場合は数列がたとえば100列あれば確率99/100でrで表される箱を選ぶことができる ちなみに実数が入っている箱をR, コイントス(0と1)で選んだ数字が入った箱をCで表した時に R, R, ... , R, C, C, ... となる数列が100列ある場合なら 代表元を用いないでも数当てに成功する確率は99/200 = (1/2) * (99/100) (1/2) * (99/100)の1/2が「確率現象1/nの依存性」 代表元を用いれば数当てに成功する確率は99/100 = 1 * (99/100) http://rio2016.5ch.net/test/read.cgi/math/1576852086/409
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s