[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
821(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/02(木)07:33 ID:kD9YEDnI(1/3) AAS
(転載w(^^)
0.99999……は1ではない その7
2chスレ:math
795 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2020/04/01(水) 23:19:10.15 ID:RqQA8SNl [2/2]
1)ここに1個の箱がある。任意の数を入れる。箱を開けずに、当てる方法なし
2)ここにn個の箱がある。任意の数を入れる。iid(独立同分布)を仮定する。箱を開けずに、当てる方法なし!!
3)n→∞の極限を考える。任意の数を入れる。iid(独立同分布)を仮定する。箱を開けずに、当てる方法なし!!
当たり前
4)時枝記事は、n→∞の極限を考えると、ある1つの箱、k番目として、箱を開けずに、確率1-εで的中できるという
iid(独立同分布)を仮定しているのに
アホでしょ、それww(^^;
841(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/02(木)21:08 ID:kD9YEDnI(2/3) AAS
>>833 追加
>>これって、アホでしょ、時枝先生ww
>>よって、背理法で時枝記事は不成立!!
>これ分からないやつ、相当数学のセンスないよね(アホのアホ)ww
さらに、アホな事象を追加する
以前書いた 多元数の話(>>538>>743)です
1.時枝記事(>>370-)の数列のしっぽの同値類と決定番号は、箱に入れる数体系には依存しないのです
しかし、99/100とか1-εに、数体系の依存性がないのは おかしい のです(^^
2.まず、普通のサイコロの目 Ω={1,2,3,4,5,6} 1つの目の的中確率 P=1/6 (なお、コイントスなら P=1/2 )
3.n面サイコロ Ω={1,2,・・,n} 1つの目の的中確率 P=1/n
4.n→∞ で Ω={1,2,・・,n・・}(=N(自然数)) 1つの目の的中確率 P=1/∞(可算無限)
5. [0,1] 上の一様分布 Ω={ 0 以上 1 以下の実数全体 } 1つの目の的中確率 P=0 (∵ルベーグの零集合(1/∞(非可算)とも考えられる))
(下記ご参照)
6.Ω={ 実数R全体 } 1つの目の的中確率 P=0 (∵ルベーグの零集合&1/R(範囲が-∞から+∞ の1次元であることを 記号の濫用で1/Rとした))
6.Ω={ 複素数Z全体 } 1つの目の的中確率 P=0 (∵ルベーグの零集合&1/R^2(同上 Rの2次元))
7.Ω={ n次多元数全体 } 1つの目の的中確率 P=0 (∵ルベーグの零集合&1/R^n(同上 Rのn次元))
という具合で、コイントス P=1/2からサイコロ 1/6・・1/n・・1/∞(可算),1/∞(非可算),・・1/R^n(Rのn次元)
と、どんどん当たらなくなるのに、「時枝理論では、標本空間Ωの変化が全く反映されない」!
これは明らかにおかしい !!
要するに、時枝理論はデタラメってことです!
QED
(゜ロ゜;
(参考)
外部リンク:mathtrain.jp
高校数学の美しい物語
確率空間の定義と具体例(サイコロ,コイン)最終更新:2015/11/06
(抜粋)
確率空間とは
確率空間とは (Ω,F,P) の三つ組のことを言います。
ただし,
・Ω は集合
・F は Ω の部分集合族(σ -加法族)
・P は F から実数への非負関数(確率測度)
つづく
842(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/04/02(木)21:09 ID:kD9YEDnI(3/3) AAS
>>841
つづき
これだけだとよく分からないと思うので,以下で一つずつ解説していきます。
とりあえず「測度論的確率論では,確率を議論するときには確率空間というものの上で考える。そして,確率空間は3つの物のセットのことを表す」と覚えておいて下さい。
標本空間 Ω
まずは標本空間 Ω についてです。確率を考える土台となる集合です。
例1
普通のサイコロ
Ω={1,2,3,4,5,6}
本当は Ω の各要素を「1 の目」「2 の目」などと書くべきですが「の目」は省略しています。
例3
[0,1] 上の一様分布(ランダムに 0 から 1 の間の実数を返すモデル)
Ω={ 0 以上 1 以下の実数全体 }
・Ω のことを標本空間と言います。
・Ω の各要素は根元事象と呼ばれます。 ω と書くことが多いです。
(引用終り)
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.041s