[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
201(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)09:15 ID:YLjNnjPy(1/11) AAS
>>197
すでに>>152-155に書いたように
1)外部リンク:ja.wikipedia.org
ペアノの公理
任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。
ペアノの公理は以下の図にまとめることができる:
x→f(x)→f(f(x))→f(f(f(x)))→・・・
ここで、各f(x),f(f(x)),f(f(f(x))),...は明確に区別可能。
存在と一意性
集合論における標準的な構成によって、ペアノシステムの条件を満たす集合が存在することを示せる。
任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理)
二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。
(引用終り)
2)外部リンク:ja.wikipedia.org
自然数
(Zermelo構成)
他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
3)外部リンク:ja.wikipedia.org
極限順序数
(抜粋)
任意の自然数よりも大きい最小の超限順序数 ω
極限順序数は他にもいろいろなやり方で定義できる:
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
よって、Zermelo構成でのω、つまりは空集合を出発点として
ペアノシステムにより、シングルトンのωが存在し、これはシングルトンの可算無限重の集合と解釈できるってこと
4)こうやって構成した ペアノシステムによるシングルトンのωが、正則性公理に反するはずもない
なお、まとめると
Zermeloの後者関数 「0 := {}, suc(a) := {a} 」
の
順序位相(英語版)に関する極限点として
ωが定義される
それだけのこと
204: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)09:40 ID:YLjNnjPy(2/11) AAS
>>201 補足
> ペアノの公理
>任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。
さて
0 := {}
として
「suc(a) は a + 1 」を生かして
suc(a) :={{a},0}と
定義してみよう
この場合、1以上の各集合の要素の数は2だ
1 :={{0},0}
2 :={{1},0}
3 :={{2},0}
・
・
こうして構成された
後者関数 「0 := {}, suc(a) :={{a},0}
の
順序位相(英語版)に関する極限点として
ωが定義される
それだけのこと
なお、>>153より ノイマン構成
後者関数 「0 := {}, suc(a) :=a∪{a}
の
順序位相(英語版)に関する極限点として
ωが定義される
それだけのこと
当然、上記各ωは異なる
(∵ 定義の後者関数が異なるのだから、各ωが異なるのは当然でしょ(^^;)
205(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)09:47 ID:YLjNnjPy(3/11) AAS
>>202
>定義がループしています。
いいえ、ループしていません
下記をどうぞ
>>166より再録
1.勿論、これはZermeloの意図した 自然数の公理的構成とは違って、
現代数学の成果
例えば、順序位相による極限などを、自由に使っている
2.いま、問題にしていることは、
21世紀の視点から
ノイマン構成によって、自然数の公理的構成が可能なことは、既知として
ノイマン構成以外の後者関数を使った場合どうなるか?
特に、Zermeloのシングルトンによる後者関数を使った場合にどうなるかを
現代数学の視点で検証しようということ
3.Zermeloのシングルトン後者関数が、正則性公理に反するというもの(=おサルさん)がいる
そんなことは無いと、私スレ主はいう
そういう議論ですよ(^^
(引用終り)
214(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)11:38 ID:YLjNnjPy(4/11) AAS
>>195 補足
私スレ主も、証明を全く読まないわけじゃない
ガロアスレ46 の422(下記)で、PDFを作って貰ったんだ
(参考)
ガロアスレ46
2chスレ:math
422 132人目の素数さん[sage] 2017/11/20
>>421のリンク先の証明は個人的には すんなり頭に入ってこないので、
微分可能な点の方から攻める方針でやってみたら、次の定理が得られた。
定理:f:R → R に対して、B_f={ x∈R|limsup[y→x]|(f(y)−f(x))/(y−x)|<+∞ } と置く。
もし R−B_f が高々可算無限個の疎な閉集合の和で被覆できるならば、f はある開区間の上で
リプシッツ連続である。
この定理を使うと、f:R → R であって、「xが有理数のとき不連続、xが無理数のとき微分可能」
となるものは存在しないことが即座に分かる。一応やってみると、そのような関数 f が存在したとすると、
R−Q = 無理数全体 = (fの微分可能点全体) ⊂ B_f
となるので、
R−B_f ⊂ Q = ∪[p∈Q] { p } …(1)
となる。(1)の右辺は疎な閉集合の可算和だから、上の定理が使えて、f はある開区間(a,b)の上で
リプシッツ連続になる。特に、(a,b)の上で連続になる。QはR上で稠密だから、x∈(a,b)∩Qが取れる。
仮定から、fは点xで不連続であるが、しかしx∈(a,b)より、fは点xで連続であり、矛盾する。
ガロアスレ47
2chスレ:math
593 132人目の素数さん[sage] 2017/12/12
pdf ならスレ主も証明を読む気があるらしいので、そうなると話は一変する。
相手の弁明を聞く気があるなら、イチャモンをつけても、それ単独では誹謗中傷には ならないからだ。
そして、証明を次のレスで投下する(うpろだに上げたのでリンクを張る)。
594 132人目の素数さん[sage] 2017/12/12
以下の pdf に証明を書いた。
外部リンク:www.axfc.net
なるべく行間が無いように、丁寧に証明を書いたつもりである。
なお、「疎な閉集合」は「内点を持たない閉集合」と同じことであるから、
pdf の中では「疎な閉集合」という概念を導入せず、必要な個所では その都度
「内点を持たない閉集合」
という言葉に置き換えた。
(引用終り)
215(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)11:50 ID:YLjNnjPy(5/11) AAS
>>214 補足
おサルのピエロも覚えているだろうか
ガロアスレ52まで、いろいろ議論した
ガロアスレ46 の422の定理は、結局間違っていた
というか、ガロアスレ46 の422の定理は
”この定理を使うと、f:R → R であって、「xが有理数のとき不連続、xが無理数のとき微分可能」
となるものは存在しないことが即座に分かる”
ということには、ならないってことだった
1.要するに、5CHの数学板では、すんなり書ける数学記号がほとんどない
例えば、分数でも、この板では1/2みたく、
通常の数学テキストでは水平の横棒−を使って、3行で表現するのが普通だが、1行の表現になる
同様に、上付き下付きの添え字も使えないし、Σ記号も同様
2.そういう不便な板に無理して書いた証明には、タイポや過誤、それに視認性が悪いことで、チェック不足や、読み手の不便がある
3.だったら、PDFにして頂戴ってこと
PDFなら、1レス2048バイトの制限もないし、自由に紙面を使えるしね
4.あと、もしテキストかネット上にPDFでもあるなら、自分で証明を書かずに、「ここにある」と提示すれば良い
テキストかネット上にPDFの方が、いわゆる”枯れている”=時間が経過していろんな人が見てチェックされているから、ミスやタイポが取れているということ
なので、纏めると
数学記号がまともに使えない5CHの板に書かれた証明は、ミスやタイポの存在する恐れが強いし、読む方も不便だし、読む気ないよということ
書く方も、無理して、5CHの板に証明を書く必要もないだろう
どうして証明を示したいなら、PDF作って提示してくれってことよ
(その前に、ネットやテキストの証明探してくれよと)
以上
219(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)12:03 ID:YLjNnjPy(6/11) AAS
>>207
>極限数が定義できるというのは極限数そのものが何になるのかを定義してるのではなく、極限数とは何かを定義する方法が色々あると言う意味です。
同意ですよ
>我々が普段使っているザックリした言語ではそのような誤読を引き起こす可能性があるから論理式が読めないと数学ができるようにはならないのです。
多分似たことを言っていると思うが、ニュアンスが違うと思う
良く教科書で、次の命題は同値として
定理x:
・命題a
・命題b
・命題c
みたいに書いて、証明:命題a→命題b→命題c→命題a
みたいに書いてある場合がある
まあ、スペースを省く意味もあるだろうが
それよりも、定理xの切り口が、命題a、命題b、命題c と3つあると捉えるのが正解だと思う
つまり、命題a、命題b、命題c の3つを総合的に理解すべきだと
そして、場面に応じて、適切にあるときは命題a、あるときは命題bと使い分けるべし
で
いまの場合で言えば、
ある適切な後者関数を取ったときに、
極限順序数ωを、
「順序数全体の成す類において順序位相(英語版)に関する極限点」と考えれば、良いという主張さ
(再録)
外部リンク:ja.wikipedia.org
極限順序数
(抜粋)
任意の自然数よりも大きい最小の超限順序数 ω
極限順序数は他にもいろいろなやり方で定義できる:
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
220: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)12:06 ID:YLjNnjPy(7/11) AAS
>>216
おっちゃん、どうも、スレ主です。
ご出馬、ご苦労さまです(^^;
221(9): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)12:15 ID:YLjNnjPy(8/11) AAS
>>211
>だいたい…{{}}…はただしくはシングルトンですらない
>集合ですらないからだw
おまえ、数学が分かってないね
シングルトンの後者関数の極限で、ωを定義するってこと
ωを、可算無限シングルトンと名付けるってこと
それは、左右に括弧 { と } とが、可算無限ならんだものと解釈できるということ
それは、下記時枝の可算無限個ある.箱(いまの場合可算無限個の { と } )と同じ解釈だよ
お前は、数学の定義分かってないな
後者関数の極限が、存在しない??
笑えるよ
>>157より再録
(参考)
過去スレ20 再録 2chスレ:math
時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版).
(引用終り)
224(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)13:48 ID:YLjNnjPy(9/11) AAS
>>222-223
数学の 定義と 解釈と
の違いが、分かってない
(>>221ご参照)
それでは、
数学はできないだろう
243(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)21:37 ID:YLjNnjPy(10/11) AAS
>>221 補足
>>だいたい…{{}}…はただしくはシングルトンですらない
>>集合ですらないからだw
現代数学が分かってないな〜
まず、定義ありきだよ
(下記の渕野先生の不完全性定理の話とか、ZFCGの話を見てごらんw(^^;)
その定義されたω=可算無限シングルトン を、どう理解するのか?
それは、極限から定まる性質を見ることだ
あなた方のいうことは、定義されたωを括弧={と }と を使ってどう表現すべきかってことでしょ?
一番外に 括弧= {と }とが、表現に、必要なら
{ …{{}}… }と表現するように、”表現”を定義すれば、良いだけのことだよw
(参考:渕野先生)
外部リンク:researchmap.jp
カントルの精神の継承
無限集合の数学/超数学理論としてのカントルの集合論のその後の発展と,その「数学」へのインパクト
渕野 昌 2018 年 11 月 10 日 (23:10 CET) 版
P14
5 ゲーデルの加速定理と数学の自由性 ? 22世紀の数学としての集合論
P17
本稿の最初に引用した,[Cantor 1883] でのカントルの「数学の自由性」に関す
る言及は,広義の数学という意味で「科学の自由性」と読み替えたときにも,十
分に意義を持つものと思う
ゲーデルの第 1 不完全性定理は,数学の無尽蔵性と解釈することもできる (こ
の解釈に関しては,[渕野 2013],[渕野 2016] 等も参照されたい).
この考察を超数学で考察することで高次の証明を得
るという, 新しいタイプの数学研究を行なうことで,人間にとって
理解可能な数学の領域を拡張してゆくことが,近未来における
数学の存続のための重要な鍵の一つとなる,ということは十分に
ありうるし,むしろ,それ以外のシナリオはありえないようにも思えるのである.
(参考:ZFCで足りないなら、新たに別の公理を加えたZFCG)
外部リンク:ja.yourpedia.org
宇宙際タイヒミュラー理論 Yourpedia
(抜粋)
グロタンディーク宇宙
圏の一般理論はZFCだけでは展開できないが、ZFCに新たに別の公理を加えたZFCGにおいては展開できるようになる。
(引用終り)
247(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)22:01 ID:YLjNnjPy(11/11) AAS
>>244
おサルの数学は、定義と表現が倒錯しているぞ
倒錯した数学は、ヒトの数学ではない!
だから、数学落ちこぼれで、「数学科修士は出たけれど」となる(^^
(参考)
外部リンク:ja.wikipedia.org
大学は出たけれど
(抜粋)
大学は出たけれどは、
・小津安二郎監督の1929年公開の映画。
・野村芳太郎監督の1955年公開の映画。
本項では両映画とも記述する。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.043s