[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
766
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)09:57 ID:PhmwLbdr(1/6) AAS
>>765
おまえの勝手だが
おまえはIUTについて語れるレベルに達していないことは明白だよw
768
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)10:12 ID:PhmwLbdr(2/6) AAS
>>761
(引用開始)
1.大学確率論で、普通にiid(独立同分布)を考えれば、
 箱にサイコロの目を入れるとして、
 P({k}) = 1/6 (k = 1, 2, 3, 4, 5, 6)
2.ところで、時枝さんは、あるd番目の箱Xdの確率がP=1-εになるという
 じゃ、その1つ以外の箱の数当て確率は どうなる?
 iid(独立同分布)通り、P({k}) = 1/6 (k = 1, 2, 3, 4, 5, 6)だと?
 バカ言ってるんじゃない
3.d番目って、代表の取り方に依存する
(引用終り)

ここ、補足しておくと
・箱にサイコロの目を入れるとして
・iid(独立同分布)と考えて、1つの箱の数当ては、確率P=1/6
・時枝は、あるd番目の箱の的中確率がP=1-εに出来るという
 全くバカげた話で、そもそも確率P=1/6と確率P=1-εと2つの確率になることがおかしい
・時枝理論では、d番目の箱以外については、何も言えない!
 だったら、本来の確率論通りで、iid(独立同分布) 箱の数当て 確率P=1/6 でしょ
・代表の取り方を変えれば、d→d’で、d’番目の箱の的中確率がP=1-εになる
 そのとき、もとのd番目の箱はどうなる? 確率P=1/6と確率P=1-εと2つの確率になるよね
・そして、代表の取り方をどんどん変えれば、d,d’,d’’,d’’’',d’’’’・・・・ と、おかしな箱が増えていく
・極論すれば、可算無限の箱全部がそうなる可能性がある
 それって、完全に 大学教程の確率論と矛盾だ
QED
(゜ロ゜;
771
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)11:16 ID:PhmwLbdr(3/6) AAS
>>749
(引用開始)
2.従って、自然数N全体からnをランダムに選ぶと、確率 P(n<=d')=0
 (もっとも、これは正統な確率計算ではない ∵ 自然数Nの一様分布は、正則分布ではない
3.なお、時枝記事では、実は、我々は決定番号dを選ぶことができず、ただ代表列rXを選ぶしことしかできない
  にも関わらず、決定番号dを選ぶことができるが如く錯覚させている
(引用終り)

決定番号dの分布について、補足説明する
1.問題の数列 X:X1,X2,・・,Xd-1,Xd,Xd+1,・・ において
 その同値類の 代表列を rX:r1,r2,・・,rd-1,Xd,Xd+1,・・
 とする(rd-1≠Xd-1とする)
 この場合、しっぽ Xd,Xd+1,・・が一致し、rd-1≠Xd-1だから、時枝の決定番号はdだ
2.いま、箱にq面サイコロを作って、1〜qの整数を入れるとする
 ・d=1となる 代表列rXは、1個しかない(全ての数が一致)
 ・d=2となる 代表列rXは、q-1個(2番目以降のしっぽの数が一致)
 ・d=3となる 代表列rXは、(q-1)q個(3番目以降のしっぽの数が一致)
 ・d=4となる 代表列rXは、(q-1)q^2個(4番目以降のしっぽの数が一致)
 ・d=mとなる 代表列rXは、(q-1)q^(m-2)個(m番目以降のしっぽの数が一致)
3.もし、qが十分大きいなら、q-1≒qとして、d=mとなる 代表列rXは、q^(m-1)個 と書ける(以下この場合を扱う)
4.ここで、「我々は決定番号dを選ぶことができず、ただ代表列rXを選ぶしことしかできない」を思い出そう
 つまり、ある代表を選んで決定番号が仮に7だったとする
 しかし、8の代表はそのq倍多く、9の代表はそのq^2倍多く・・となる
 dは全ての自然数を渡るが、一様分布ではなく、裾の(指数関数的に)増大する分布になる
5.このように、決定番号dの大小については、正統な確率的な扱いができないことは、大学の確率論を学べば分かる
6.それを、数学的に説明したのが、過去のガロアスレ 確率論の専門家さんと ジムの数学徒さんのレスです(下記)
QED
(^^;

(参考)
ガロアスレ 20 2chスレ:math (512 2016/07/03 確率論の専門家さん来訪 ID:f9oaWn8AID:1JE/S25W
ガロアスレ 80 2chスレ:math (31&271ご参照 ジムの数学徒さん ID:jmw8DMZb
772
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)12:00 ID:PhmwLbdr(4/6) AAS
>>771
さらに、補足説明する

1)まず、有限長の数列を考えよう
 問題の数列 X:X1,X2,・・,Xd-1,Xd,Xd+1,・・Xh (hは有限整数)
 同値類の代表列を rX:r1,r2,・・,rd-1,Xd,Xd+1,・・Xh
 とする
2)上記同様、箱にq面サイコロを作って、1〜qの整数を入れるとする
 qは十分大きく、q-1≒qとする
3)上記>>771の通り d=mとなる 代表列rXは、q^(m-1)個 と書ける
 全体hまでの場合の数は、等比数列の和公式より
 Σm=1〜h {q^(m-1)} = (q^h -1)/(q-1)・・(1)
 dまでの場合の数も、同様
 Σm=1〜d {q^(m-1)} = (q^d -1)/(q-1)・・(2)
4)そこで、有限長の数列→可算無限長の数列 で 極限 h→∞ を考える
 決定番号が、数列の先頭部分で、有限d以下に収まる割合Lは
 上記(1)(2)を使うと
 L={(q^d -1)/(q-1)}/{(q^h -1)/(q-1)}
  =(q^d -1)/(q^h -1)
 ここで、dはある有限の定数で、極限 h→∞ をとると
 lim h→∞ L =lim h→∞ (q^d -1)/(q^h -1) =0
 つまり、Lは 指数関数的に0に近づく
5)このような分布を持つ 決定番号dの大小の確率は論じられない
 ∵
 1)可算無限長列では、決定番号dが有限の場合の割合は、0!!
 2)決定番号dが有限の場合の割合が0の中で、d1,d2の大小を論じて確率計算をしても、無意味
QED
ww(^^;

(参考)
外部リンク[htm]:www.kwansei.ac.jp
等比数列の和 - 関西学院大学
外部リンク:ja.wikipedia.org
等比数列
783: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)13:35 ID:PhmwLbdr(5/6) AAS
>>782
どうも。スレ主です。
ありがとう
おっちゃん も認識しているよ、それ(^^

(参考)
純粋・応用数学
2chスレ:math
26 名前:132人目の素数さん[sage] 投稿日:2020/03/29(日) 13:09:57.11 ID:JlXmRJZe
おっちゃんです。
>>26
区体論は、どちらかというとトンデモに分類されているようだ。
784
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)15:17 ID:PhmwLbdr(6/6) AAS
>>772 補足
時枝の話は、可算無限数列を、形式的冪級数(の係数)で
しっぽが一致
 ↓
式の次数が高い係数がすべて一致
におきかえると

問題の数列=1つの形式的冪級数の 形式的冪級数環のしっぽの同値類
と考えることができて 分り易い

例えば下記
(なお、変数をyとします(Xはすでに使っているため))
問題の数列 X:X1,X2,X3,・・,Xd,Xd+1・・
 ↓
形式的冪級数 FX=X1+X2y+X3y^2・・ xd-1 y^(d-2)+Xd y^(d-1)+Xd+1 y^d・・

代表列 rX:r1,r2,・・,rd-1,Xd,Xd+1,・・
 ↓
形式的冪級数 FrX=r1+r2y+r3y^2・・rd-1 y^(d-2)+Xd y^(d-1)+Xd+1 y^d・・
と、対応して書き直せる

ここで、2つの式の差 FX-FrX を考えると、係数がd番目Xdから後が一致しているので
FX-FrX= ・・・+0y^(d-1)+0y^d・・ としっぽの係数 d以降がすべて0になる多項式になる

そして、同値類は、形式的冪級数のしっぽによる 多項式環の話に直せる
つまり、決定番号は、多項式環の1つの式(=同値類の元)の次数d-1に直せる*)
(*)注:多項式環では、係数が0次の定数項から始まるので、次数との比較で1つ ずれる)

この話は、過去にガロアスレにも書いたが、また 時間があるときに 書きます
形式的冪級数→多項式環→多項式の次数 という流れで考えると
時枝記事の(みせかけ)トリックが、よく分ります

(参考)
外部リンク:lupus.is.kochi-u.ac.jp
塩田研一 高知大学 理工学部 情報科学教室
外部リンク[html]:lupus.is.kochi-u.ac.jp
塩田研一覚書帳
外部リンク[html]:lupus.is.kochi-u.ac.jp
体 ― 塩田研一覚書帳 ―
p 進体
p 進付値(ふち)
有限次代数体の素イデアル p についても p 進距離を考えることができます。
また体 F 上の一変数関数体 F(x) においては、例えば x が素数の役割を果たして付値が定義でき、
その完備化は形式的べき級数体 F((x)) になります。
Qp の中で |x|p≦1 を満たす元 x を p 進整数と呼び、 p 進整数全ての集合を Zp と表します。
外部リンク[html]:lupus.is.kochi-u.ac.jp
有限体 ― 塩田研一覚書帳 ―
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.040s