[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
531: 2020/03/14(土)22:21 ID:Fnn0AbzJ(1) AAS
>>526
> 独立同分布 iidは、時枝の反例である
「独立同分布」でも反例にはならないですよ
可算無限個全ての箱に「独立同分布」を仮定して実数を入れればR^Nの元になるとしても
同じR^Nの元の選び方は他にもあるので反例にならない
有限でサイコロをたとえば5回(= {1, 2, 3, 4, 5, 6}^5)振るということは
1から6までの数字を5個選んで並べるわけだけれども
サイコロを1回も振らずに5回分の数字を書いたカード6^5枚から1枚選ぶことも同じ
サイコロを2回振って残り3回分の数字を書いたカード6^3枚から1枚選ぶことも同じ
>>525
箱に実数を入れるルールでコイントス{0, 1}^Nなら出題者はR^Nから{0, 1}^Nの元を選んでいる
(他の例としてコイントスで{2, 3}^Nや{a, b}^N (a, bは実数)ならそのような元をR^Nから選んでいる)
回答者は箱を開けてR^Nの代表元からある番号から先が{0, 1}^Nの元に一致する代表元を選ぶ
> 実際には、できないのに
出題者は自然数を小さいものから順に全て箱に入れることができるんでしょう?
{1, 2, 3, ... , n, ... }
決定番号 = 自然数だから大きさが比較できないのならそれも無理じゃないですか?
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.034s