[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
448(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)10:11 ID:FZfOcjPG(1/10) AAS
>>446
どうぞ、おサルには数学はムリと解して貰って可w(^^;
450(8): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)11:19 ID:FZfOcjPG(2/10) AAS
>>444
> 4)時枝を1列で考えます。可算無限長L(=∞)の列に対し、代表番号dは有限
> 5)そういう有限dを使った数当ては、出来ないってことです
下記引用の広中−岡のエピソードの教訓は、
数学は 不必要な条件を落として、抽象化して純化した方が、
見通しが良いということ。数学はそれができる
これを時枝で考えてみると、要するに、時枝の数当ての原理は
「長さLの数列があって、
問題の数列X:X1,X2,・・,Xi,Xi+1・・ において、
同値類の数列Xの属する同値類の代表列rをうまく選んで
r:r1,r2,・・,Xi,Xi+1・・(つまり Xi,Xi+1・・以降が一致)
と出来れば、数当て成功。
しっぽ Xi+1・・を開けて、決定番号d=iとなれば、ri=Xiですから、問題の数列XのXiが分かる」
という理屈です
なので、これをもっと抽象化すれば
決定番号d(=i) <i+mになるように、十分大きな数 i+m を選んで、しっぽの Xi+m・・を見ると
属する同値類が分かり、代表列r:r1,r2,・・,Xi,Xi+1・・が分かり、ri=Xiが分かるという原理です
ですが、問題はそのような、十分大きな数i+mを選ぶことはできないということ
(∵ L=∞ だから (^^; )
これ、>>444-445 『お釈迦様の手の上の悟空』であり、数学的には DR Pruss氏の”conglomerability assumption”による説明です
よって、時枝の数当て手法は、不成立です
QED (^^
(参考)
外部リンク:ja.wikipedia.org
広中平祐
特異点解消問題について、1963年に日本数学会で講演した。その内容は、一般的に考えるのでは問題があまりに難しいから、様々な制限条件を付けた形でまずは研究しようという提案であった。
その時、岡潔が立ち上がり、問題を解くためには、広中が提案したように制限をつけていくのではなく、むしろ逆にもっと理想化した難しい問題を設定して、それを解くべきであると言った。
その後、広中は制限を外して理想化する形で解き、フィールズ賞の受賞業績となる[4]。
451(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)11:29 ID:FZfOcjPG(3/10) AAS
>>450 補足
時枝は、複数列の比較という 不純な要素を混ぜて
十分大きな数 i+m が選べるように、錯覚させているだけなのです
でも、数列の長さ L=∞の場合には、有限の i+m による数当ては不可です
”無限”を、しっかり理解している人は、誤魔化されない
特に、大学教程の確率論で、無限族 X1,X2,・・,Xi,Xi+1・・ を学んだ人は
おサルは、哀れな素人氏相手に「無限がぁ〜」とほざく
自分たちも、”無限”が分かっていないのにね
”無限”を、しっかり理解している人からみれば、それ 同じ穴の狢ですよw
QED (^^;
457: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)13:55 ID:FZfOcjPG(4/10) AAS
おサルは、毛が3本足りない
知恵が無いな〜w(゜ロ゜;
(参考)
外部リンク:detail.chiebukuro.yahoo.co.jp
kam********さん2015/12/700:03:41 Yahoo 知恵袋
「サルは人に比べて毛が3本少ない」
という話を聞いたことがあります。
(正確には違う言葉かも)
これは誰の言葉なんでしょうか?
あるいはいつ頃(江戸時代?、昭和になってから?)の話なんでしょうか。
ベストアンサーに選ばれた回答
プロフィール画像
mei********さん 2015/12/720:16:04
正確には「猿は人間に毛が三筋(三本)足らぬ」ですね。
他のことわざと同様に
いつ誰が言い出したのかは不明ながら
少なくとも江戸時代に使われていたのは間違いありません。
江戸時代に歌舞伎の黄金期を作ったのが
5代目の市川団十郎という役者です。
俳句を詠むのも非常に上手な人物だったそうで
白猿(はくえん)なる俳名も持っていました。
この名は「自分は名人には毛が三本足りない猿」の意味で
洒落たネーミングが評判になったといいます。
江戸中期の人間である5代目の市川団十郎に
DNAなんて知識があったら歴史がひっくり返りますよ。
littlebit081231さんのおっしゃるように
実は「毛」じゃない「け」だという話もあります。
よく言われるのが「色気」「情け」「洒落っ気」で
または「見分け」「情け」「やりとげ」ともされます。
しかしこの説に学問的な確証はありません。
458(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)14:16 ID:FZfOcjPG(5/10) AAS
>>450 補足
補足します
1)いま、自然数Nに属する 2数 x,y ∈N があったとする
0<= x,y <=n (nは1以上の有限の自然数)
として、2数 x,y が、ランダムに0〜nの数から選ばれたとすれば
確率 P(x<y)=1/2 ですね (x<yである確率、但し、簡単のために x=yの場合を除く)
2)ところで、二人が どちらが大きな数を唱えるか のゲームを考える(大きい数が勝ち)
もし、ランダムに数を選ぶしかないなら、勝率は1/2です
もし、自由に数を選べるなら、最大のnを、(お互い)選ぶから、引き分けになるだろう
3)ところで、最大のnの制約なしで、自然数Nから無制限に選べるとすれば
もし、後出しが許されるなら? xが出されたあと、yはそれより 大きな数を選べるから、後出し必勝です
逆に、yを見た後で、xを唱えるなら、yの方が勝つでしょう
4)では、両者同時に数を唱えるとしたら? これは、条件が不足しているので、数学的には、勝率は1/2は導けないですね
条件が不足しています。なにか、仮定をおかないと、勝率は1/2は導けない
(これ、数学的には DR Pruss氏の”conglomerability assumption”による説明です(>>450))
例えば、おサルと人の勝負なら、人が勝ちます。おサルは3以上の数概念がありませんからね〜 ww(^^;
QED
459: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)14:18 ID:FZfOcjPG(6/10) AAS
>>458 タイポ訂正
逆に、yを見た後で、xを唱えるなら、yの方が勝つでしょう
↓
逆に、yを見た後で、xを唱えるなら、xの方が勝つでしょう
461(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)15:49 ID:FZfOcjPG(7/10) AAS
>>460
おサルは、毛が3本足りない
知恵が無いな〜w(゜ロ゜;
・n→∞を考えた時に、nが有限とは異なる数理的現象が起きる
・例えば、下記のコーシー分布はどうか? ”平均と分散が定義されない”、”大数の法則が成立しない”、”中心極限定理も成立しません”などです
・コーシー分布は 裾が重い分布です。でも、まだ、裾はn→∞で、減衰して 極限で0になります
・しかし、時枝の決定番号dは、全く減衰しません。裾はn→∞で、減衰せず 極限で0以外の値を持ちます
そういう分布では、決定番号の大小比較による確率計算は、不可です。
(これ、数学的には DR Pruss氏の”conglomerability assumption”による説明です(>>450))
(参考)
外部リンク:www.slideshare.net
Cauchy分布について(ベイズ塾例会資料)2015.07.26
考司 小杉, Working
(抜粋)
コーシー分布についてのまとめ
4. コーシー分布の特徴 ? 平均と分散が定義されない。 ? 最頻値と中央値は定義される。
15. 裾が重い分布
16. Re:コーシー分布の特徴 ? 時々とんでもない外れ値を出すことがある分布 ? 実現値の場合,裾の方に必ず出現度数がある=裾が 重い分布。 ? べき分布の一種 ? 大数の法則が成立しない(大数の法則は期待値 平 均値の存在を前提としている)
外部リンク:mathtrain.jp
高校数学の美しい物語
コーシー分布とその期待値などについて 最終更新:2015/11/06
分野: 大学の確率・統計
(抜粋)
コーシー分布:
確率密度関数が f(x)=1/{π(1+x^2)} であるような連続型確率分布を(標準)コーシー分布と言う
正規分布とコーシー分布
いずれも左右対称の分布ですが,
正規分布は「外れ値を取る確率が低い(裾が軽い)」
コーシー分布は「外れ値を取る確率が高い(裾が重い)」
分布の具体例として,しばしば取り上げられます
大数の法則が成立しない
大数の法則は期待値の存在を仮定しています。そのためコーシー分布に対しては大数の法則は成立しません
同じく,中心極限定理も成立しません
このように「期待値の存在」や「大数の法則」など当たり前に成り立ちそうなことも成り立つとは限らないことの具体例として,コーシー分布は話題に挙がることが多いです
463: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)16:36 ID:FZfOcjPG(8/10) AAS
何の話をしてるか、理解できないとなw(^^;
そりゃ、あんたが、おサルだからよww(゜ロ゜;
465(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)18:04 ID:FZfOcjPG(9/10) AAS
>>445 補足
DR Pruss氏は、mathoverflowの回答で、下記を述べている
即ち、「the function is measurable.」ならば 良いが、そうでないときは、ダメだという
実際、コイントス(=coin flips)で、Ω={0,1}^Nなのに、実数の数列の同値類と代表なら、”guess π”とかなって
それって、”Intuitively this seems a really dumb strategy. ”じゃんと、DR Pruss氏は いう (^^;
(参考)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
DR Pruss氏
(抜粋)
Here's an amusing thing that may help see how measurability enters into these things.
Consider a single sequence of infinitely many independent fair coin flips.
Our state space is Ω={0,1}^N, corresponding to an infinite sequence (Xi)^∞ i=0 of i.i.d.r.v.s with P(Xi=1)=P(Xi=0)=1/2.
That's a fine argument assuming the function is measurable.
If so, then guess according to the representative.
If not, then guess π. (Yes, I realize that π not∈{0,1}.)
Intuitively this seems a really dumb strategy.
466(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)18:34 ID:FZfOcjPG(10/10) AAS
>>465 補足の補足
1)時枝の数列の しっぽ 同値類と 代表による数当てで、DR Pruss氏の指摘
2)本来、コイントス(=coin flips)で、Ω={0,1}^N なら、{0,1}の数列の 同値類と 代表なら、まだスジは通っている
だが、「実数Rの数列の 同値類と 代表 って、なんだそれは〜っ!」 てことですよねw(゜ロ゜;
3)さらに さらに、時枝の数当て論法は、複素数の数列でも同じことができるでしょw
数列 Z:Z1,Z2,・・Zi,・・ で、しっぽ同値類と、自然数の代表番号d を使って、全く同じ論法で、代表での複素数 Zi で当てられるはず
4)ところで、この話は、上記のコイントス {0,1}と完全に類似で、代表から 複素数 Zi =Xi +Yi√-1 が 数当ての候補として上がるけど
実数R ⊂ 複素数Z であるから、実数列 X:X1,X2,・・,Xi,Xi+1・・ でも当たりますよね〜w
5)しかし、上記のコイントスと同じで、複素数の代表で Ziが出てきて、Zi =Xi +Yi√-1で、Yi≠0って なんか変でしょ
6)同じ論法は、4元数の数列でも可だし、8元数の数列でも可だし・・・ って、それって なんか変でしょ?
7)結局、DR Pruss氏は、mathoverflowの回答で指摘しているように
「the function is measurable.」ならば 良いが、そうでないときは、この手法 ダメってことじゃないですかね?w(^^;
(参考)
外部リンク:ja.wikipedia.org
確率変数
(抜粋)
概念の拡張
統計学における基本として、確率変数がとる値は実数であり、従って期待値や分散その他の値を計算することができる。しかし、実数以外の要素を値としてとる確率変数も考えられる。値として取る要素としては、ブール変数、カテゴリカル変数(英語版)、複素数ベクトル、ベクトル、行列、数列、樹形図、コンパクト集合、図形、多様体、関数等が考えられる。
もう1つの拡張は確率過程、すなわち時間や空間などで添字付けられた添字付き確率変数である。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.038s