[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
435
(1): 2020/03/11(水)19:42 ID:3kv0Qt3e(1/3) AAS
>>421
> P→Qの真偽とは無関係に

なんだから
¬Q→¬Pの真偽とも無関係だろうが

>>414
> 時枝の反例足りえているぞ!! (>>380ご参照)

偽であったら反例にならんだろ
436
(1): 2020/03/11(水)20:08 ID:3kv0Qt3e(2/3) AAS
>>424 >>426
> 独立同分布 が反例になっている

反例にならない

(1) 袋の中にR^Nの元が1つ入っている
袋の中から元を取り出し各項の数字を箱に入れる
出題者は可算無限個の箱全てに数字を入れる

回答者は1つ残して箱を全て開けて見てもよい
また袋の中の元と開けた箱の数字を比較できる

袋の中のR^Nの元をSn: s1, s2, s3, ... [= s, s, s, ... (添え字を省略)]と書けば
s, s, s, Xi, s, s, ... 独立同分布と仮定すればXi = sであって数当ては成功

(2) 袋の中に完全代表系が1組入っている
袋の中から代表元を1つ取り出し各項の数字を箱に入れる
出題者は可算無限個の箱全てに数字を入れる

回答者は1つ残して箱を全て開けて見てもよい
また袋の中の代表元と開けた箱の数字を比較できる

袋の中のR^Nの代表元の1つをr1, r2, r3, ... [= r, r, r, ... (添え字を省略)]と書けば
r, r, r, Xi, r, r, ... 独立同分布と仮定すればXi = rであって数当ては成功

(3) 出題者と回答者がそれぞれ完全代表系を1組用いる
出題者は自分の完全代表系から代表元を1つ取り出し各項の数字を箱に入れる
出題者は可算無限個の箱全てに数字を入れる

回答者は1つ残して箱を全て開けて見てもよい
また自分の完全代表系の代表元と開けた箱の数字を比較できる

ある番号から先は少なくとも全て独立同分布と仮定することができる
... , rk, Xi, r, r, ... であればXi = rであって数当ては成功

100列に分けた場合にこの仮定が正しい確率は99/100

(4) 出題者がR^Nの元を出題し回答者が完全代表系を1組用いる
出題された数列が1つであれば(3)に帰着する
439: 2020/03/11(水)21:28 ID:3kv0Qt3e(3/3) AAS
あんたこそ分かってないね

>>437
> 1)時枝記事の主張:任意の可算無限数列 X1,X2,・・,Xi,・・ において
> 、あるXiを箱を開けずに 確率1-εで言い当てることができる

> 明らかに、上記の1)と2)とは、矛盾

明らかとごまかしているけれども矛盾していないじゃん

全ての箱を開けて全ての箱の情報を得れば選んだ箱の的中確率は1である
s, s, s, Xi, s, s, s, ...
全てのXiについて的中確率は1である
「独立同分布」ならXi = s

得られる情報が全ての箱でない場合
時枝記事の主張は先頭から有限個の箱の情報が得られない場合には
的中確率が1である箱を選ぶ確率が1-ε

>>438
内容を理解していないことをそんなレスでわざわざごまかさなくてもいいから
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.035s