[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
96
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)00:12 ID:25QO+/o4(1/9) AAS
>>89
>あなたのような位相空間を定義しないで極限を使うなどと言う事は数学では許されません。

言っている意味が分からない

1.あなた、大学教員の免許でも持っているのか、大学教員かね? 数学研究者? なんでもない、ただの名無しさんでしょ?
2.あなたが、位相空間という概念を発明したの? 論文書いたの? 貴方の言っている”位相空間”なる概念は、どこかのテキストからのパクリでしょ?
3.だったら、私と同じ立場じゃない? >>63に引用した”Order topology”読みなさいよ

どこの馬の骨とも分からない、
おそらくは、大学教員でもなく、プロの数学研究者でもない、ただの名無しさん
バカの5CHの数学板で、大学のゼミごっこかい?

ここは、大学のゼミでもなんでもない
おっさんずの ゼミ 「ごっこ」には、私は参加しませんので
悪しからず(^^;
98
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)00:36 ID:25QO+/o4(2/9) AAS
>>97
ここは、大学じゃない
定義が分かっていないのは、あなたですよ
99
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)00:45 ID:25QO+/o4(3/9) AAS
>>83 補足

グロタンディーク宇宙 U が出来上がってしまえば
その中で、極限は定義できる

それだけのこと
もちろん、それは、Zermelo構成の論文が1900年初期の論文で意図した、無限集合の構成とは流れが逆だ

しかしいま、問題にしていることは、ある何かの後者関数の極限 lim n→∞ suc(n) が存在すれば、それは正則性公理に反するのかどうかということ
Zermeloの意図の無限集合の構成に拘らずに、純粋に”極限 lim n→∞ suc(n) が存在すれば、それは正則性公理に反するのかどうか”だけが問題なのです

Zermeloの意図の無限集合の構成に拘れば
まだ、極限は定義されていないとなるが

それは
いま問題にしていることとは無関係
105
(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)09:46 ID:25QO+/o4(4/9) AAS
>>63
>外部リンク:en.wikipedia.org
>Order topology

”Order topology”が読めないとな?w(^^;
まあ、下記でも嫁めw

外部リンク:ja.wikipedia.org
順序構造と位相構造

全順序集合の位相
順序位相
全順序集合A に対し、無限半開区間
(-∞ ,b)={x∈ A | x<b}
(a,∞ )={x∈ A | a<x}
全体の集合を準開基とする位相を順序位相(order topology)という[注 1]。
例えば、通常の大小関係 <= によって実数全体の集合 Rを全順序集合と見ると、その順序位相は通常の距離により定められる位相と同等になる。
108
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)10:00 ID:25QO+/o4(5/9) AAS
>>105 追加

自然数に関していろいろな後者関数が、存在するという
aの後者関数:=suc(a)

漸化式風に書けば
a_n+1:=suc(a_n)
ですわ

で、自然数や実数が既に得られて、順序位相も決まった
ノイマンの方法でいいでしょ

ところで、自然数に使う後者関数の取り方はいろいろあるという(下記)
とすれば、後者関数の極限
lim n→∞ suc(a_n) が存在することになんの不思議もない

極限 lim n→∞ suc(a_n) が、正則性公理に反するだぁ〜?w
それ、おサルのタワゴトでしょw(^^;

(参考)
外部リンク:ja.wikipedia.org
自然数

以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。
これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。

外部リンク:ja.wikipedia.org
ペアノの公理

存在と一意性
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理) 二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。
112
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)19:30 ID:25QO+/o4(6/9) AAS
>>110-111
>順序数そのものが定まってないのにノイマンの方法もへったくれもありません。

おまえら、全然読めてないね(^^

”The standard topologies on R, Q, Z, and N are the order topologies.”な

”The standard topologies”な

”The standard”な! ww(^^

>>63より)
外部リンク:en.wikipedia.org
Order topology
(抜粋)
The open sets in X are the sets that are a union of (possibly infinitely many) such open intervals and rays.
A topological space X is called orderable if there exists a total order on its elements such that the order topology induced by that order and the given topology on X coincide. The order topology makes X into a completely normal Hausdorff space.
The standard topologies on R, Q, Z, and N are the order topologies.
114
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)19:35 ID:25QO+/o4(7/9) AAS
あと
>>63より)
"順序位相(英語版)"
より、下記
まあ、確かに、 (a,∞)とか”∞”が定義されていないと、
循環論法になるけど、
”∞”が先に別の仕方で定義されていれば、これで良いだろ
115: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)19:37 ID:25QO+/o4(8/9) AAS
>>113
だれかな?
おサルは、複数IDを使った前科があるからな〜w(^^

逆だろ
バカを袋叩きだろww
116
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/28(土)19:41 ID:25QO+/o4(9/9) AAS
おサル
問題をわざと、論点そらししているな

いま問題にしていることは
後者関数suc(a)で
n→∞の極限

すなわち 極限 lim n→∞ suc(a) が正則性公理に反する
というのがおサルの主張

そんなことはないというのが、
オレだよおれw(^^;
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.082s