[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
129: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/29(日)21:36:11.72 ID:uR3g5aDb(2/4) AAS
おサル必死w(^^;
必死で問題を変えて、論点ずらしみえみえw(^^
152
(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/01(水)09:07:16.72 ID:G5rtMfGn(1/22) AAS
>>116
ここにもどる、正月ひまなのでw(^^

(引用開始)
おサル
問題をわざと、論点そらししているな
いま問題にしていることは
後者関数suc(a)で
n→∞の極限
すなわち 極限 lim n→∞ suc(a) が正則性公理に反する
というのがおサルの主張
そんなことはないというのが、
オレだよおれw(^^;
(引用終り)

いま分かっていることを整理しよう
(参考)
外部リンク:ja.wikipedia.org
ペアノの公理
(抜粋)
任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。

ペアノの公理は以下の図にまとめることができる:

x→f(x)→f(f(x))→f(f(f(x)))→・・・
ここで、各f(x),f(f(x)),f(f(f(x))),...は明確に区別可能。

存在と一意性
集合論における標準的な構成によって、ペアノシステムの条件を満たす集合が存在することを示せる。
まず、後者関数を定義する; 任意の集合 a に対してその後者を suc(a) := a ∪ {a} と定義する。
集合 A が後者関数に関して閉じているとき、つまり 「a が A の元であるならば suc(a) も A の元である」が成り立つときに、 A は帰納的集合であるという。
ここで、次のように定義する。
・0:=Φ={}
・N:= 0 を含むあらゆる帰納的集合の共通部分
・suc := 後者関数のNへの制限
この集合 N を自然数全体の集合といい、これは時々(特に順序数に関する文脈で)ギリシャ文字の ω と表記される。

任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理)
二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。
(引用終り)

つづく
238
(1): 2020/01/02(木)17:24:32.72 ID:G/YeCJ4m(4/8) AAS
>>221
>お前は、数学の定義分かってないな
>後者関数の極限が、存在しない??
>笑えるよ
おまえ自分で自分を「あほバカ」って言ってる割に自信たっぷりに上から目線だなw
口先では謙遜しておきながら実際の行動はまるで逆w
真のサイコパスはおまえw
257
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/03(金)11:20:19.72 ID:ivt0JCXh(7/8) AAS
>>256 追加

 >>250より
自然数のノイマン構成:空集合から出発して、後者関数はそれ以前に出来た全ての数とする

>>164より
(ノイマン構成)に倣って、
後者関数suc (a)に対して、
それまでに出来た集合の和 ∪a との対応を考えよう
番号    ∪a
0:=Φ  
1:={Φ}   {0}
2:={{Φ}}  {0,1}
 ・
 ・
n:={・・{Φ}・・} {0,1・・n-1}
 ・
 ・
 ↓(極限 lim n→∞ )
ω:=・・・{Φ}・・・ {0,1・・n-1・・}(=:N(自然数)))
(引用終り)

という対応になる
もし、ノイマン構成のN(自然数)が、
下記のフォン・ノイマン宇宙
Vω+ω:ordinary mathematicsの宇宙であり、ツェルメロの集合論のモデル
内の存在とすれば、
 >>176より
2 := suc(1) = {0, 1} = {0, {0}} = { Φ, {Φ} }→{{Φ}}(→は、一番右のΦを残すように不要の{}とΦを除く操作)
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = { Φ, {Φ}, { Φ, {Φ} } }→{{{Φ}}}(同上)
というように
ノイマン構成の集合に対応して
→:(→は、一番右のΦを残すように不要の{}とΦを除く操作)
という集合操作を行うと、Zermeloのシングルトンが生成されるのです

なので、ノイマン構成のN(自然数)から、
→:(→は、一番右のΦを残すように不要の{}とΦを除く操作)
という集合操作、それは”超限回”の操作
で、Zermeloのシングルトンが生成されると解釈することも可能
なので、Zermeloのシングルトンも、Vω+ωの宇宙内(ツェルメロの集合論のモデル)です(^^;

つづく
294: 2020/01/10(金)00:53:50.72 ID:M9L+a71R(1/2) AAS
∞の1こ前の有限数を聞いてんの!
∞は虚数なんでしょ?
>>293
❓❓❓

次レスにバカって1こも入れないで説明出来るよね〜?
389
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/08(日)18:04:31.72 ID:TTUqgbD+(5/9) AAS
不要だ
「確率論 iid(独立同分布)」 自身が、反例になっているよ
それが分からないなら、お引き取りくださいww(^^
527
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/14(土)19:44:41.72 ID:r2jRdi7g(6/7) AAS
>>526
つづき

(多元数の例追加)
外部リンク:ja.wikipedia.org
クリフォード代数
外部リンク:ja.wikipedia.org
ケーリー=ディクソンの構成法
この方法で与えられる各段階の多元環はケーリー=ディクソン代数として知られる。これらは複素数を拡張するから、超複素数系となっている。
ケーリー=ディクソンの構成法は限りなく実行でき、各段階では直前の段階の代数の倍の次元を持つ冪結合代数を与える。

外部リンク:ja.wikipedia.org
独立同分布 iid
IID変数は離散時間(英語版)レヴィ過程と見なされる。
ベルヌーイ試行の列は、ベルヌーイ過程と解釈される。

(引用終り)
以上
541
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/15(日)11:25:18.72 ID:OT+7dZla(3/4) AAS
>>358より)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80
2chスレ:math
時枝問題(数学セミナー201511月号の記事)最初の設定
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
(引用終り)

ここで、前提を回答者に有利なように変更します
まったく自由
  ↓
必ずある確率現象を もと にして、iid(独立同分布)の確率変数族X:X1,X2,・・,Xi,・・とすること

こうすると、真っ当な確率統計の手法ならば、Xiを1つ残して、他の箱を開けて、X1,X2,・・たちの範囲や分布、平均値、標準偏差などを算出できて
そうして、これら統計数字から、Xiの数は、例えば ある範囲[a,b]に入る確率pと算出できる

離散確率変数ならば、Xi=r となる確率pと算出できる
(なお、連続確率変数では、1点的中はできない!!ww )

しかし、時枝は連続確率変数でも、1点的中できて、確率を1-εにできる? という
これ、あきらかに、無理ですし、おかしぃ〜よね(゜ロ゜;

この話は、おサルには、難しいよね〜、理解するのがww
546: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/18(水)07:59:10.72 ID:vfR9jLHl(1) AAS
おサルたち、時枝の手法が不成立って、分かり始めたのか?
おとなしくなったな
605: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)13:30:01.72 ID:TMbOZsnt(17/22) AAS
>>604

外部リンク:bokete.jp
「能ある鷹は爪を隠す」の対義語
能なしサルはケツ真っ赤 - 2019年12月01日 ボケて(bokete)
(引用終り)

おサルのお顔は、まっかっかw(^^;
613: 2020/03/22(日)14:59:01.72 ID:OFMTPL9H(4/8) AAS
Prussがnon-conglomerableだと指摘した理由 それは
「場合分けによって確率が全然違ってしまうから」

1.項mで場合分けしたら、確率0
(ほとんどすべての列で決定番号dがmより大きいから)

2.列xで場合分けしたら、確率1
(ほとんどすべての自然数mが列xの決定番号d以上だから)

3.n列固定で、1列選んで、The Riddleの戦略で項を決めたら確率1−1/n

つまり場合分けの仕方でconglomerabilityに基づいた確率の結果が異なるから
668: 2020/03/26(木)18:00:43.72 ID:/vnWknlA(7/11) AAS
(質問)
もしかして

・数列 .9、.99、.999、… の極限は.999…

・そして、数列の各項について
 .000…と.9000…は同値 (決定番号2)
 .000…と.9900…は同値 (決定番号3)
 .000…と.9990…は同値 (決定番号4)
 …

上記2点から

・.000…と.999…も同値 (決定番号∞)

という「論法」を用いてますか?
672: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/26(木)20:15:21.72 ID:+Ol1TdQp(3/6) AAS
>>670
レーヴェンハイム・スコーレムの定理を否定するとな?!w (^^;
数学のすの字も解ってないことを天下に晒して頂き本当に有難うございました。
705: 2020/03/27(金)11:04:39.72 ID:asHKGG7T(17/35) AAS
結局「ある箱の数当てが1-εにできる」という誤解に対する否定だから
相手は記事の著者じゃなくて、自分自身
742: 2020/03/28(土)11:25:58.72 ID:+ARtdTH+(4/13) AAS
>>741
箱入り無数目にコーシー列など不要
相変わらず馬鹿丸出し
879: 2020/06/08(月)16:34:14.72 ID:ZNiOPlY2(1/2) AAS
>>877
誤 勝つ戦略はありません!
正 勝つ戦略が理解できません!

選択公理が分んない人には無理だな
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.047s