[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
57
(4): 2019/12/24(火)10:10:14.44 ID:u6yGTjeG(1) AAS
>>55
>いや、極限と定義するなら位相を定義しないと。
>そのためにはまずZermelo順序数のなす集合を定義しないといけなくなって定義が循環します。

なんか極限分かってない?
極限をいうためには、有限部分の定義だけで済む

Zermelo順序数の有限部分の定義は明白
(というか、Zermeloに限らず、様々な後者関数で定義可能)

有限部分の定義から、極限 lim n→∞ suc(n) が出るよ

確かに、n→∞の部分で下手すると循環論法だが
しかし、公理的な構成という枠を外せば(つまり、”∞”の構成が別の手段で終わった後で)

いろんな後者関数の極限が定義できる
数学として普通だよ
80: 2019/12/25(水)21:29:09.44 ID:vcY8XrPJ(4/4) AAS
今日の一曲
動画リンク[YouTube]

122: 2019/12/29(日)15:53:04.44 ID:XkWlXq2i(1) AAS
やっぱ二次男はぶさいくだね
161: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/01(水)10:26:47.44 ID:G5rtMfGn(8/22) AAS
>>159
極限が定義できなければw(^^;
現代数学は、崩壊するぜw
269: 2020/01/03(金)12:34:16.44 ID:+VadvwiK(1/4) AAS
>>255
キヨッシー!カムバック!
ずんどこ博士が再来しないかな?
オカキヨが生まれ変わって
もう1度特異点にアタック掛けて
ブレークスルーして欲しい!
353: 2020/02/26(水)09:18:35.44 ID:dFzdkWUW(4/5) AAS
お式はよ!
エモ熱しやすく覚めやすいから
安心してください♪
新しいターゲットが出れば
すぐペロッって旧ターゲットから
剥がれちゃえるから♪
459: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)14:18:51.44 ID:FZfOcjPG(6/10) AAS
>>458 タイポ訂正

  逆に、yを見た後で、xを唱えるなら、yの方が勝つでしょう
     ↓
  逆に、yを見た後で、xを唱えるなら、xの方が勝つでしょう
511
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)21:03:38.44 ID:nz3HyF4S(4/5) AAS
>>490 補足

包含関係例:
コイントス {0,1}^N ⊂ サイコロ一つ{0,1,・・5}^N ⊂ 自然数列 N^N ⊂ 実数列R^N ⊂ 複素数列Z^N ⊂ 十六元数列S^N

注)サイコロ一つ”{0,1,・・5}^N”は、包含関係を分り易くするために、{1,2,・・6}^Nを書き換えた

コイントス {0,1}^Nは、ベルヌーイ列(Bernoulli sequence)(下記)であり、{0,1}は確率現象としては、最小でしょう
( 集合{0}で 確率1 では、あまり意味がないでしょうから)

さて、時枝先生の論法は、「大は小を兼ねる」で、ベルヌーイ列{0,1}^Nでも、実数列として扱って R^N として、確率1-ε で的中できるという
ならば、「大は小を兼ねる」で、十六元数列S^Nの同値類を使えば、ベルヌーイ列{0,1}^Nから複素数列Z^Nまで、なんでもござれで、確率1-ε

でも、それって、ベルヌーイ列{0,1}^N の推測候補に、Si(十六元数)が上げられるという、バカさ加減
それって、おかしいよね〜ww(^^;

(参考)
外部リンク:ja.wikipedia.org
ベルヌーイ過程
(抜粋)
ベルヌーイ過は、2つの値を取る独立な確率変数列からなる離散時間の確率過程である。ベルヌーイ過程とは、いわばコイントスであるが、そのコインは公平つまり裏と表の出る確率が等しいものに限定されない。

定義
ベルヌーイ過程は、離散時間の確率過程であり、有限または無限の独立な確率変数列 X1, X2, X3,... からなる。この確率変数列について、次が成り立つ。
・それぞれの i について、Xi の値は 0 か 1 である。
・i の全ての値について、Xi = 1 となる確率 p は常に同じである。
換言すれば、ベルヌーイ過程は独立していて確率分布が同じなベルヌーイ試行の列である。個々の Xi のとりうる2つの値を「成功; success」と「失敗; failure」と呼ぶこともある。

ベルヌーイ列
確率空間 (ω ,Pr)上に定義されたベルヌーイ過程があるとき、 ω ∈ Ω 毎に次の整数の列が対応する。
Z^ω={n∈ Z :Xn(ω )=1}
これをベルヌーイ列(Bernoulli sequence)と呼ぶ。従って例えば、 ω がコイントスの列を表すとき、そのベルヌーイ過程はコイントスの結果を整数の列で表したものである。
ほとんど全てのベルヌーイ列は、エルゴード列である。
519: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/14(土)07:06:06.44 ID:r2jRdi7g(1/7) AAS
>>494 タイポ訂正2つ

5)実数列rで、例えば r2を十六元数s2(s2 not∈ S)に変えた数列r’は、r’not∈R^Nですが、r’∈E(S)rです
  ↓
5)実数列rで、例えば r2を十六元数s2(s2 not∈ R)に変えた数列r’は、r’not∈R^Nですが、r’∈E(S)rです

 同様の類似例は、任意のriで、十六元数si(si not∈ S)に変えた数列r’’で、r’’not∈R^Nですが、r’’∈E(S)rです
  ↓
 同様の類似例は、任意のriで、十六元数si(si not∈ R)に変えた数列r’’で、r’’not∈R^Nですが、r’’∈E(S)rです

分かると思うが(^^;
572
(1): 2020/03/21(土)20:25:18.44 ID:XWnhFsyt(5/6) AAS
>>571
>底辺卒
Sランクということになってますね
外部リンク:school-navi.org
Sの個数については言及しません
602: 2020/03/22(日)13:11:13.44 ID:+SjNGkOL(4/10) AAS
抽象化になってないと言ってんのに分らんの?バカなの?痴呆なの?
630: 2020/03/23(月)22:03:05.44 ID:2vPoPtWs(1) AAS
>>625
> dmaxはいくらでも 大きく取れる

それは特定のある同値類(の代表元)に固定した場合であって

> ”有限の代表番号dの存在”は否定された

これは言えないよ

全ての同値類(ある1つの完全代表系に含まれる全ての代表元)について
は言えないから

もっと単純な例
実数を可算無限個の箱に入れていく
実数aに一致したら停止する
この場合aを固定したら有限回で停止しないと考えるのが妥当でも
実数のどれかに一致したら停止という条件なら有限回で停止する
772
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/29(日)12:00:38.44 ID:PhmwLbdr(4/6) AAS
>>771
さらに、補足説明する

1)まず、有限長の数列を考えよう
 問題の数列 X:X1,X2,・・,Xd-1,Xd,Xd+1,・・Xh (hは有限整数)
 同値類の代表列を rX:r1,r2,・・,rd-1,Xd,Xd+1,・・Xh
 とする
2)上記同様、箱にq面サイコロを作って、1〜qの整数を入れるとする
 qは十分大きく、q-1≒qとする
3)上記>>771の通り d=mとなる 代表列rXは、q^(m-1)個 と書ける
 全体hまでの場合の数は、等比数列の和公式より
 Σm=1〜h {q^(m-1)} = (q^h -1)/(q-1)・・(1)
 dまでの場合の数も、同様
 Σm=1〜d {q^(m-1)} = (q^d -1)/(q-1)・・(2)
4)そこで、有限長の数列→可算無限長の数列 で 極限 h→∞ を考える
 決定番号が、数列の先頭部分で、有限d以下に収まる割合Lは
 上記(1)(2)を使うと
 L={(q^d -1)/(q-1)}/{(q^h -1)/(q-1)}
  =(q^d -1)/(q^h -1)
 ここで、dはある有限の定数で、極限 h→∞ をとると
 lim h→∞ L =lim h→∞ (q^d -1)/(q^h -1) =0
 つまり、Lは 指数関数的に0に近づく
5)このような分布を持つ 決定番号dの大小の確率は論じられない
 ∵
 1)可算無限長列では、決定番号dが有限の場合の割合は、0!!
 2)決定番号dが有限の場合の割合が0の中で、d1,d2の大小を論じて確率計算をしても、無意味
QED
ww(^^;

(参考)
外部リンク[htm]:www.kwansei.ac.jp
等比数列の和 - 関西学院大学
外部リンク:ja.wikipedia.org
等比数列
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.055s