[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
44: 2019/12/22(日)11:50:52.37 ID:dWgKJ6XY(10/14) AAS
まずΩは無限集合だからシングルトンではありません

次にΩの要素はZermeloの自然数だから
0(={})以外はシングルトンです
(Ωは必ずしも全ての自然数を要素とする必要はないので
 0が要素でない場合、いかなる要素もシングルトンです)

上記のΩが正則性公理を満たすことは明らか
54
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/24(火)07:34:05.37 ID:UkAnARu3(1) AAS
>>49
>シングルトン、と言い切った瞬間 トンデモ
>ω={x} ⇔ x=ω-1
>ない筈の前者が現れた これこそトンデモ

おまえ、定義と名付けが逆転しているぞ

(>>47より引用開始)
結局は、極限なんだよ
Zermelo構成による後者関数の極限
lim n→∞ suc(n) が存在する
それを、可算多重シングルトンωと名付ける(数学的には定義するだな)
(引用終り)

それでは、数学は出来ないぞ
もう一度書く
Zermelo構成による後者関数の極限 lim n→∞ suc(n) を、可算多重シングルトンωと名付ける(数学的に定義する)
ってこと

これを否定したいなら、
Zermelo構成による後者関数の極限 lim n→∞ suc(n)
が、正則性公理に反すること証明してみなよ
おっさんw(^^;
89
(1): 2019/12/27(金)14:03:54.37 ID:cci0J0KH(1) AAS
>>88
違います。
あなたのような位相空間を定義しないで極限を使うなどと言う事は数学では許されません。
20世期だろうが、21世期だろうが関係ありません。
数学である以上未定義の言葉で定義を与えても意味ありません。
95: 2019/12/27(金)18:44:11.37 ID:k/2lG7oM(4/4) AAS
>>94
馬鹿とはそういうもんだ
170
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/01(水)11:11:57.37 ID:G5rtMfGn(13/22) AAS
>>169
意味わからん

>しかしわからないのは明らかにあなた自身も自分の勉強量が私のそれと比べて圧倒的に劣っているのは分かりますよね?

証明がない
そもそも、そんなことは証明できない
自分が、なにをどこまで理解できているかなど、この板に書くつもりもないし、理解させようという気も無い

私の書いていることの殆どは、典拠が付いているはず
自分の地の文は、半分もないだろう
そこを、良く考えたらどうだ?

貴方は、典拠が付いていることに突っかかって
自爆事故を起している
冷静になれよ
201
(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/02(木)09:15:23.37 ID:YLjNnjPy(1/11) AAS
>>197
すでに>>152-155に書いたように
1)外部リンク:ja.wikipedia.org
 ペアノの公理
任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。
ペアノの公理は以下の図にまとめることができる:
x→f(x)→f(f(x))→f(f(f(x)))→・・・
ここで、各f(x),f(f(x)),f(f(f(x))),...は明確に区別可能。
存在と一意性
集合論における標準的な構成によって、ペアノシステムの条件を満たす集合が存在することを示せる。
任意の自然数 a にはその後者 (successor)、suc(a) が存在する(suc(a) は a + 1 の "意味")。
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理)
二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[2]。
(引用終り)

2)外部リンク:ja.wikipedia.org
自然数
(Zermelo構成)
他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。

3)外部リンク:ja.wikipedia.org
極限順序数
(抜粋)
任意の自然数よりも大きい最小の超限順序数 ω
極限順序数は他にもいろいろなやり方で定義できる:
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
よって、Zermelo構成でのω、つまりは空集合を出発点として
 ペアノシステムにより、シングルトンのωが存在し、これはシングルトンの可算無限重の集合と解釈できるってこと

4)こうやって構成した ペアノシステムによるシングルトンのωが、正則性公理に反するはずもない

なお、まとめると
Zermeloの後者関数 「0 := {}, suc(a) := {a} 」

順序位相(英語版)に関する極限点として
ωが定義される
それだけのこと
433: 2020/03/11(水)17:46:22.37 ID:TLWj7uEm(6/9) AAS
>>431
時枝問題の前にまず反例とは何かを学習して下さい。
分らなければ近所の中学生に教えてもらってはいかがでしょう?
435
(1): 2020/03/11(水)19:42:21.37 ID:3kv0Qt3e(1/3) AAS
>>421
> P→Qの真偽とは無関係に

なんだから
¬Q→¬Pの真偽とも無関係だろうが

>>414
> 時枝の反例足りえているぞ!! (>>380ご参照)

偽であったら反例にならんだろ
438
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/11(水)20:35:50.37 ID:VmLB1T0T(4/5) AAS
>>436
 >>437 な w(^^
445
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/12(木)07:49:25.37 ID:Fux/6iYZ(3/4) AAS
それを数学的に説明したのが、下記のDR Pruss氏の”conglomerability assumption”による説明です(^^;

現代数学の系譜 工学物理雑談 古典ガロア理論も読む83
2chスレ:math

分かり易く例えで説明する
・ランダムを直感的に考えて、決定番号dが属する自然数の集合Nから、ランダムに任意の元dを選ぶことを考えよう
・さて、我々が日常生活し考えている100兆くらいの数は、自然数N全体のほんの一部にすぎない
 いわゆる天文学的に大きな数も また同じで、所詮有限にすぎない
・コンピュータ内で数を扱うとして、まともに固定小数点の数として扱えば、桁あふれを起こして、コンピュータメモリ内に収まらない
 天文学では、指数を使ったりするけれども、>>876のように極限を考えると、それでも 極限の途中で、指数でさえ コンピュータメモリ内に収まらない
・それが、>>876のように、無限大超自然数 ω を考えれば、はっきり見えるってわけです
・戻ると、”自然数の集合Nから、ランダムに任意の元dを選ぶ”という ランダムネスの定義が、本当は出来ずに、手品のタネになっている
・つまり、ある可算無限数列X=(x1,x2,・・・)に対して、問題の数列Xを知らずに、同値類の代表r=(r1,r2,・・・)を選び、決定番号dが決まる
 決定番号dが、如何にも我々の知っている有限の数の範囲になるが如くの錯覚をさせている(本当はここ極限です)
 それが、手品のタネになっている
 有限の世界なら、d1とd2の大小比較も明確だ
・しかし、無限大の世界では、d1とd2の大小比較は簡単に言えない
・それを、DR Pruss氏は、mathoverflowで述べているのです

(参考)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
DR Pruss氏

By a conglomerability assumption, we could then conclude that P(X<=Y)=0, which would be absurd as the same reasoning would also show that P(Y<=X)=0.

外部リンク:www.mdpi.com
Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis
by Paul Bartha
Symmetry 2011, 3(3), 636-652;
482
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/13(金)07:36:32.37 ID:nz3HyF4S(1/5) AAS
>>480
>「自然数の集合Nからランダムに元を選ぶ」
>記事にそんなことが書いてあれば速攻で問題になります。馬鹿も休み休み言って下さいね。

 (>>450より)
 下記引用の広中−岡のエピソードの教訓は、
 数学は 不必要な条件を落として、抽象化して純化した方が、
 見通しが良いということ。数学はそれができる
 (引用終り)

そこで、時枝記事の原理を抽象化して、「数列のしっぽの同値類と代表と決定番号から、ある箱Xiの数を確率1-εで的中できる」理論としました
こう抽象化すると、箱に入れる数は、実数でなくとも良いことが分かる
そして、複素数でも十六元数でも、あるいはそれ以外の多元数にでも、この原理が適用できることは、あきらかですねw(^^;

(参考)
外部リンク:ja.wikipedia.org
広中平祐

特異点解消問題について、1963年に日本数学会で講演した。その内容は、一般的に考えるのでは問題があまりに難しいから、様々な制限条件を付けた形でまずは研究しようという提案であった。
その時、岡潔が立ち上がり、問題を解くためには、広中が提案したように制限をつけていくのではなく、むしろ逆にもっと理想化した難しい問題を設定して、それを解くべきであると言った。
その後、広中は制限を外して理想化する形で解き、フィールズ賞の受賞業績となる[4]。
491: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/13(金)16:14:14.37 ID:4mEOwMQW(4/5) AAS
>>490 蛇足

”ホウガン関係”のとき
コイントス {0,1}.^N
 ↓
コイントス {1,2}.^N
とか、読み替えてね (^^;
497
(1): 2020/03/13(金)19:08:01.37 ID:Jl3AXnW3(1) AAS
現代数学の系譜 雑談=哀れな素人=ネカマ=ぷっ=サル石といったところか
670
(2): 2020/03/26(木)19:27:49.37 ID:w9QXoHzC(1/3) AAS
>>656
>1.決定番号∞について
>・この∞の意味は、言い換えれば、「決定番号d上限はない」あるいは「決定番号dは全ての自然数を渡る」ということ
バカの言ってることが正しいと仮定。
「決定番号dは全ての自然数を渡る」より d∈N
決定番号d=∞ より ¬(d∈N)
矛盾が導かれたので仮定は偽。

数学のすの字も解ってないことを天下に晒して頂き本当に有難うございました。
877
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/06/07(日)18:18:02.37 ID:Q0Rzcycw(1/2) AAS
<転載>
Inter-universal geometry と ABC予想 (応援スレ) 47
2chスレ:math
583 自分:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/06/06(土) 09:46:06.53 ID:SrYikU2t [5/10]
(参考:>>370より)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む80
2chスレ:math
(抜粋)
時枝問題(数学セミナー201511月号の記事)
1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
(引用終り)

<証明>
勝つ戦略はありません!
一目ですw(^^;
QED!!
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.041s