[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
153(5): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/01(水)09:07:56.36 ID:G5rtMfGn(2/22) AAS
>>152
つづき
外部リンク:ja.wikipedia.org
自然数
(抜粋)
(ノイマン構成)
・任意の集合 a の後者は a と {a} の合併集合として定義される。
suc (a):=a∪{a}
・自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」として定義される。
無限集合の公理により集合 M が存在することが分かり、このように定義された集合がペアノの公理を満たすことが示される。 このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
(Zermelo構成)
以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
(引用終り)
以上
537(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/15(日)09:38:24.36 ID:OT+7dZla(1/4) AAS
人ならぬ おサルのチコちゃんは、時枝が分かりません てか?
(>>525)
・コイントス {0,1}を当てるのに、可算無限実数列 R^N のしっぽの同値類を作る
・同値類の代表の数列r∈ R^Nから、i番目の数 問題のXi=ri が成立すれば、目出度く的中、大当たり
・ところがところが、なんでXiが{0,1}なのに、実数 ri 使っているの? 「ボーっと生きてんじゃねーよ!」
・時枝記事の原理は、十六元数Sの列 S^Nに拡張適用できます(∵ 可算無限列のしっぽの同値類を作ることは、Rに限られない)
・なんでXiが{0,1}なのに、十六元数 si が出てくる? 複素数C ⊂ 十六元数S ですから、{0,1}に対して、複素数z=x+iy が候補に出てくるが如しです!w
・で、「しっぽの同値類を作ることは、Rに限られない」ので、多元数でもなんでもあり。100元数でも 100万元数でも なんでも可。
・なんでXiが{0,1}なのに、多元 100万元数の候補作って、確率1-εにできるの? 簡単に、0 or 1 で良いじゃないw (それで、確率1/2ですよね。簡単でしょ? )
人ならぬ おサルのチコちゃんには、難しい話ですかね(^^;
779: 2020/03/29(日)12:40:07.36 ID:YiV+QH7u(8/11) AAS
時枝の主張は「勝つ確率≧1-ε」なのになんで瀬田は「ある箱が当たる確率≧1-ε」って誤解するんだろうね?馬鹿だから?
880: 2020/06/08(月)16:41:00.36 ID:ZNiOPlY2(2/2) AAS
>>878
(反例の非存在の証明)
「箱入り無数目」記事に従って、100列それぞれから1箱を選ぶ
このうち、代表元と一致しない箱はたかだか1箱である
なぜなら、自列の決定番号dが他の列の決定番号の最大値Dより
大きくなる列はたかだか1列しか存在しないからである
もしd>Dとなる列が2列以上あるとすると
di>dj かつ dj>diとなる
自然数di,djが存在することになるが
これは自然数の全体が全順序集合であることと矛盾する
馬鹿は、自然数が全順序集合でないといいたいようだwww
903(1): 2020/07/04(土)20:37:56.36 ID:1EH0+MbP(5/7) AAS
瀬田は数学の勉強してないのか?
5年間全く進歩しとらんやないかい
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.032s