[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
81
(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/27(金)08:26:38.31 ID:DGQc6wD0(1/3) AAS
メモ
外部リンク:ja.wikipedia.org
ゲーデルの構成可能集合
クルト・ゲーデルによって導入された、集合論の公理を満たすモデル上で空集合から帰納的に構成していける集合のことである。より正確な定義は後に述べる。
性質
・L は全ての順序数を含む最小の ZFC のモデルである。

外部リンク:ja.wikipedia.org
極限順序数
順序数に関するフォンノイマンの定義(英語版)を用いれば、任意の順序数はそれより小さい順序数全体の成す整列集合として与えられる。順序数からなる空でない集合の合併は最大元を持たないから、常に極限順序数である。フォンノイマン基数割り当て(英語版)を用いれば、任意の無限基数もまた極限順序数となる。

外部リンク:en.wikipedia.org
Von Neumann definition of ordinals

外部リンク:ja.wikipedia.org
フォン・ノイマン宇宙 Vとは、遺伝的整礎集合全体のクラスである。
数学の集合論とその周辺分野において、フォン・ノイマン宇宙 Vとは、遺伝的整礎集合全体のクラスである。この集まりは、ZFCによって定義され、ZFCの公理に解釈や動機を与えるためにしばしば用いられる。
整礎集合の階数(rank)はその集合の全ての要素の階数より大きい最小の順序数として帰納的に定義される。 [1] 特に、空集合の階数は0で、順序数はそれ自身と等しい階数をもつ。Vの集合はその階数に基づいて超限個の階層に分けられ、その階層は累積的階層と呼ばれる。
261: 2020/01/03(金)11:33:16.31 ID:glmNLmg1(3/11) AAS
>>252
>完備化という概念がある
>完備化 (順序集合)
>”Dedekind cut”について、説明されている
>カントールは、完備化にコーシー列を使ったという

今やろうとしてるのは
Qの完備化ではなくNの完備化

デデキント切断もコーシー列も要らない
306: 2020/02/22(土)12:30:16.31 ID:0iFmeQIA(3/13) AAS
>>305の Case3) の下の方の訂正:
仮定から n≧3 であり 0<θ<π だから、 → 仮定から n≧3 であり 0<θ<π/2 だから、
395
(1): 2020/03/08(日)20:25:49.31 ID:MqcHgeWg(7/8) AAS
>>393
やはりあるある詐欺でしたか
ここは数学板ですよ? 詐欺師は出て行かれた方がよろしいのでは?(^^
417: 2020/03/10(火)20:13:33.31 ID:mmHfZIYm(2/3) AAS
>>414
「独立同分布」を仮定して数列を出題する
その結果数列Sn: s1, s2, ...が出題されたとして

> ”Xiは、こういう値である確率がp”だと推定する

出題された数列に関しても「独立同分布」の仮定が必要ならば
「独立同分布」を仮定してXiがsiである確率が1であることを示してください
(数当ての結果を正しく判定するのに必要ですから)

> それで、時枝の反例足りえているぞ

「Xiがsiである確率が0である」というのは数当ての反例にならないですよ
数当ての反例は「Xiがsiである確率が1である」かつ「回答者がXiの値としてSi以外の値を答える」
を満たさないといけないです

回答者側からすると袋の中の代表元を用いて以下のような推定をしている
100列に分ければ「Xiがsiである確率が1である」かつ「代表元の数字とsiが等しい」が正しい確率が99/100

> その場合でも、「確率1−ε」にはなりません

十分に多くの有限個の列に分ければ確率1-εになりますね
439: 2020/03/11(水)21:28:48.31 ID:3kv0Qt3e(3/3) AAS
あんたこそ分かってないね

>>437
> 1)時枝記事の主張:任意の可算無限数列 X1,X2,・・,Xi,・・ において
> 、あるXiを箱を開けずに 確率1-εで言い当てることができる

> 明らかに、上記の1)と2)とは、矛盾

明らかとごまかしているけれども矛盾していないじゃん

全ての箱を開けて全ての箱の情報を得れば選んだ箱の的中確率は1である
s, s, s, Xi, s, s, s, ...
全てのXiについて的中確率は1である
「独立同分布」ならXi = s

得られる情報が全ての箱でない場合
時枝記事の主張は先頭から有限個の箱の情報が得られない場合には
的中確率が1である箱を選ぶ確率が1-ε

>>438
内容を理解していないことをそんなレスでわざわざごまかさなくてもいいから
458
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)14:16:29.31 ID:FZfOcjPG(5/10) AAS
>>450 補足

補足します
1)いま、自然数Nに属する 2数 x,y ∈N があったとする
  0<= x,y <=n (nは1以上の有限の自然数)
  として、2数 x,y が、ランダムに0〜nの数から選ばれたとすれば
  確率 P(x<y)=1/2 ですね (x<yである確率、但し、簡単のために x=yの場合を除く)
2)ところで、二人が どちらが大きな数を唱えるか のゲームを考える(大きい数が勝ち)
  もし、ランダムに数を選ぶしかないなら、勝率は1/2です
  もし、自由に数を選べるなら、最大のnを、(お互い)選ぶから、引き分けになるだろう
3)ところで、最大のnの制約なしで、自然数Nから無制限に選べるとすれば
  もし、後出しが許されるなら? xが出されたあと、yはそれより 大きな数を選べるから、後出し必勝です
  逆に、yを見た後で、xを唱えるなら、yの方が勝つでしょう
4)では、両者同時に数を唱えるとしたら? これは、条件が不足しているので、数学的には、勝率は1/2は導けないですね
  条件が不足しています。なにか、仮定をおかないと、勝率は1/2は導けない
  (これ、数学的には DR Pruss氏の”conglomerability assumption”による説明です(>>450))
  例えば、おサルと人の勝負なら、人が勝ちます。おサルは3以上の数概念がありませんからね〜 ww(^^;

QED
840: CIA 2020/04/02(木)20:12:48.31 ID:vaZakOcE(10/10) AAS
The One
動画リンク[YouTube]


この動画は、2015/12/13の横浜アリーナのライブのもの
その日、実際にそこにいたので間違いない
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.049s