[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
38: 2019/12/22(日)08:47:36.23 ID:dWgKJ6XY(6/14) AAS
>>33
>∈-数列
>0∈1∈2∈3・・・∈n∈・・・→ω
>("→ω"の意味は、ωに向けてずっと続くってことね)
>(なお、ωは、超限順序数で、いわゆる”有限”ではない)
→ω は必要ありません
つまりωが存在しないとしても
0∈1∈2∈3・・・∈n∈・・・
は無限列です
><Neumann構成>では、後者関数の定義が、それ以前の全ての要素からなる集合だから
これは嘘ですね
Neumann構成の後者関数はx∪{x}
つまり、xに自分自身を要素として追加した集合です
結果として自分より小さい順序数全てを要素とする集合になってるだけ
><Zermelo構成>においては、もともと、任意のm<nで、m∈n不成立
これも嘘ですね
まず、自然数nの場合、n-1<nですが、n-1∈n
Zermelo構成の後者関数x+1={x}から明らかですね
>だから、もともと、”n not∈ω(=Ω)”なのです(nは、任意の自然数)
これはいえませんね
ωは極限順序数ですから、そもそも前者であるω-1が存在しません
もし、自然数の場合と同様に
「前者以外の要素を持たない」
と言い切ってしまうと、そもそも前者が存在しない場合
「いかなる要素も持たない」
ということになり空集合になってしまいます
順序数として必要な性質
「ωから任意の自然数nへの有限∈降下列が存在する」
を満たしているならば
「いかなる自然数nについても
n<m<ωかつm∈ωとなる
自然数mが存在する」
必要があります
したがって
・ωは少なくとも無限個の自然数を要素として持つ
・要素中の最大値は存在しない
という2つの性質を満たす必要があります
したがってn ∈ωとなるnは無限個あります
上記の性質を満たすnの配置を
いくらでも疎らにすることはできますが
有限個にはできません
287(1): 2020/01/09(木)23:01:38.23 ID:p2aiz/7n(1/6) AAS
>>286
∞番目の1つ前のナンバーはなんですか?
293(1): 2020/01/10(金)00:30:41.23 ID:YnXkCflA(1) AAS
バカは無限=大きな有限と思ってるw
バカ丸出しw
322(2): 2020/02/23(日)17:33:26.23 ID:f+nUR9kX(1/3) AAS
>>321
君に問題を出そう
不完全性定理が成り立つ理論Tでは
Tの無矛盾性Con(T)はTでは証明できない
つまり、Tに¬Con(T)を公理として追加した
理論T+¬Con(T)も無矛盾だ
さてT+¬Con(T)でCon(T+¬Con(T))の真偽は決定可能か?
382(1): 2020/03/08(日)11:09:04.23 ID:MqcHgeWg(1/8) AAS
>>380
>iid(独立同分布)を仮定すれば、そんなXiは存在しようがないという反例が存在することは自明です
自明なら反例となる実数列を示して下さい。またあるある詐欺ですか?
422(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/11(水)07:41:35.23 ID:VmLB1T0T(2/5) AAS
>>418-419
(引用開始)
(>>419より)
”iid(独立同分布) の 意味”さえ理解できていないって
それって、最低レベルのひどい落ちこぼれだと思うよww(゜ロ゜;
(>>418より)
”反例の 意味”さえ理解できていないって
それって、最低レベルのひどい落ちこぼれだと思うよww(゜ロ゜;
(引用終り)
小学生にも分かるように、説明します(^^
1.ある確率現象に従う 確率変数の無限族 X1,X2,・・,Xi,・・において
2.これらが、iid 独立同分布に従うとします
(下記 wikipedia とか、>>359の 確率論 I, 確率論概論 I (原; 外部リンク[html]:www.math.nagoya-u.ac.jp) 九州大 2002/06/18 ご参照)
3.iid 独立同分布として、例えば、コイントスを考えると、数当ては、確率1/2 (サイコロ1個なら確率1/6)
4.この場合、各 X1,X2,・・,Xi,・・ は、全て同じ確率 pになります。例外はありません
5.一方、時枝記事前半の論法では、例外のXiが存在して、Xiの的中確率が1-ε(εはいくらでも小さくできる)という
6.時枝は最初の仮定 「iid 独立同分布」と矛盾しています
(iid では例外無し! 一方、時枝は例外のXiがあるという。そもそも、「Xiの的中確率が1-ε(εはいくらでも小さくできる)」が胡散臭いよね?w)
QED
(大学レベルの確率論を勉強しましょう〜!)
(参考)
外部リンク:ja.wikipedia.org
独立同分布
466(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/12(木)18:34:26.23 ID:FZfOcjPG(10/10) AAS
>>465 補足の補足
1)時枝の数列の しっぽ 同値類と 代表による数当てで、DR Pruss氏の指摘
2)本来、コイントス(=coin flips)で、Ω={0,1}^N なら、{0,1}の数列の 同値類と 代表なら、まだスジは通っている
だが、「実数Rの数列の 同値類と 代表 って、なんだそれは〜っ!」 てことですよねw(゜ロ゜;
3)さらに さらに、時枝の数当て論法は、複素数の数列でも同じことができるでしょw
数列 Z:Z1,Z2,・・Zi,・・ で、しっぽ同値類と、自然数の代表番号d を使って、全く同じ論法で、代表での複素数 Zi で当てられるはず
4)ところで、この話は、上記のコイントス {0,1}と完全に類似で、代表から 複素数 Zi =Xi +Yi√-1 が 数当ての候補として上がるけど
実数R ⊂ 複素数Z であるから、実数列 X:X1,X2,・・,Xi,Xi+1・・ でも当たりますよね〜w
5)しかし、上記のコイントスと同じで、複素数の代表で Ziが出てきて、Zi =Xi +Yi√-1で、Yi≠0って なんか変でしょ
6)同じ論法は、4元数の数列でも可だし、8元数の数列でも可だし・・・ って、それって なんか変でしょ?
7)結局、DR Pruss氏は、mathoverflowの回答で指摘しているように
「the function is measurable.」ならば 良いが、そうでないときは、この手法 ダメってことじゃないですかね?w(^^;
(参考)
外部リンク:ja.wikipedia.org
確率変数
(抜粋)
概念の拡張
統計学における基本として、確率変数がとる値は実数であり、従って期待値や分散その他の値を計算することができる。しかし、実数以外の要素を値としてとる確率変数も考えられる。値として取る要素としては、ブール変数、カテゴリカル変数(英語版)、複素数ベクトル、ベクトル、行列、数列、樹形図、コンパクト集合、図形、多様体、関数等が考えられる。
もう1つの拡張は確率過程、すなわち時間や空間などで添字付けられた添字付き確率変数である。
516: 2020/03/13(金)21:37:49.23 ID:pDK92XTa(12/12) AAS
>>515
時枝記事では、実は箱の中身はなんでもいい
543: 2020/03/15(日)12:02:46.23 ID:tqehXNOu(1) AAS
> なんでXiが{0,1}なのに、実数 ri 使っているの?「ボーっと生きてんじゃねーよ!」
ボーっとしている人はコイントスを例に挙げるのに
自分で0と1を実数全体から選んでいることに気づかないんだよね
> 必ずある確率現象を もと にして、iid(独立同分布)の確率変数族X:X1,X2,・・,Xi,・・とすること
可算無限個の箱に有限数列の数字を順番に入れた場合にはある番号から先は全て空のままである
そこでこの空の可算無限個の箱に入れる実数を「iid(独立同分布)の確率変数族X:X1,X2,・・,Xi,・・とする」
代表元rを決めるとある自然数dが存在してd番目以降の箱をX1とすれば
r, r, r, ... , Xi , r, r, ... となってXi = rである確率は1である
100列に分けてその中から1つ数列を選ぶ場合に残りの99列の決定番号からX1を決めると
少なくとも99列はr(= X1), r, r, ... , Xi , ... となってXi = rである確率は1である
588: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/22(日)10:02:49.23 ID:TMbOZsnt(5/22) AAS
>>586
>Of course, one could mean "independently" here in some non-mathematical causal sense. (And there may be philosophical reason for doing this: fitelson.org/doi.pdf )
(補足)
外部リンク[pdf]:fitelson.org
Synthese ・ September 2014?137 (3), 273-323
Declarations of Independence
Branden Fitelson and Alan Hajek
Abstract
According to orthodox (Kolmogorovian) probability theory, conditional probabilities are by definition certain ratios of unconditional probabilities. As a result, orthodox conditional probabilities are regarded as undefined whenever their antecedents have zero unconditional probability. This has important ramifications for the notion of probabilistic independence.
Traditionally, independence is defined in terms of unconditional probabilities (the factorization of the relevant joint unconditional probabilities). Various “equivalent” formulations of independence can be given using conditional probabilities.
But these “equivalences” break down if conditional probabilities are permitted to have conditions with zero unconditional probability.
We reconsider probabilistic independence in this more general setting. We argue that a less orthodox but more general (Popperian) theory of conditional probability should be used, and that much of the conventional wisdom about probabilistic independence needs to be rethought.
外部リンク:www.researchgate.net
同上
外部リンク:fitelson.org
Branden Fitelson is Distinguished Professor of Philosophy at Northeastern University.
Before teaching at Northeastern, Branden held teaching positions at Rutgers, UC-Berkeley, San Jose State, and Stanford and visiting positions at the Munich Center for Mathematical Philosophy at LMU-Munich (MCMP @ LMU) and the Institute for Logic, Language and Computation at the University of Amsterdam (ILLC @ UvA).
以上
725(2): That's done 2020/03/27(金)15:45:34.23 ID:asHKGG7T(30/35) AAS
無限列xとその同値類の代表元r(x)を比較した場合
任意の自然数nについて「第n項が不一致」って事象は、
任意有限個では独立だけど、無限個で考えたら独立ではないね
なぜなら自然数の無限部分集合について、その要素となるn全部で
「第n項が不一致」となることはないから
(不一致となる項は有限個)
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.037s