[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
1(8): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/12/20(金)23:28:06.21 ID:ZaXFXilg(1/2) AAS
前スレ
現代数学の系譜 カントル 超限集合論
2chスレ:math
関連スレ
1)現代数学はインチキのデパート
2chスレ:math
直接には、ここの28からの続き
2) 1)の前スレ
現代数学はインチキだらけ
2chスレ:math
3) 2)の中の正則性公理に関する議論の前のスレ(^^
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77
2chスレ:math
138: 2019/12/30(月)09:41:50.21 ID:QJZL/mXh(1/5) AAS
>>136
>極限が正則公理に反するだ?
否 Zの中にない∞を追加する場合
z=z+1
という式を満たすzとして追加するなら
z=z-1
という式も満たすから正則公理に反する
といっている
そうではなくZermelo構成でのωを
{{},{{}},{{{}}},…}
とするなら正則公理に反しないし
ω+1は{ω}であってωではないから問題ない
192: 2020/01/01(水)22:04:04.21 ID:E03EXCHH(7/10) AAS
>>191
◆e.a0E5TtKEはただ直感するだけの白痴だからな
だから平気でωが極限順序数であることに真っ向から反する
>>176のような「アルゴリズム」を口にする
(これが不可能であることは>>183に書いたが
要するにNeumannのωに最も右の(つまり最大の)要素が存在しないから)
間違った直感には犬の糞ほどの価値もないw
226: 2020/01/02(木)14:50:17.21 ID:lJNP8tAT(14/23) AAS
>>221
>おまえ、数学が分かってないね
数学が分かってないのは、◆e.a0E5TtKE、貴様だ
>シングルトンの後者関数の極限で、ωを定義するってこと
正しく極限をとれば、Zermelo構成でもωは集合として存在するだろう
しかし
>ωを、可算無限シングルトンと名付けるってこと
>それは、左右に括弧 { と } とが、可算無限ならんだものと解釈できるということ
とはならない
ωは極限順序数であって後続順序数ではない
つまりωより小さい最大の順序数である前者ω-1は存在しない
したがってωより小さい順序数(つまり自然数)すべてについて
∈降下列(当然有限長)が存在するようにするには
ωが無限個の自然数を要素としてもつ必要がある
逆にωが無限個の自然数を要素として持てば
それがいかなるものであってもZermelo構成の
順序数としての条件を満たす
>それは・・・●●の可算無限個ある.箱(いまの場合可算無限個の { と } )と同じ解釈だよ
●●の話はしないが、もし貴様がまだ
「可算無限列には最後の箱がある!」
と言い張るなら、jこう言い返すまでだ
「そんなものはねぇよ、ダラズが!!!」
305(3): 2020/02/22(土)12:18:43.21 ID:0iFmeQIA(2/13) AAS
Case2):平面 R^2 上の半径1の円周Cで囲まれた円の中に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の円周Cで囲まれた円の中に有理点 A(x/z,y/z) は存在して、(x/z)^2+(y/z)^2<1 を満たす。
また、仮定から n≧3 だから x/z<1、y/z<1 から、(x/z)^n+(y/z)^n<(x/z)^2+(y/z)^2。
よって、(x/z)^n+(y/z)^n<1 から x^n+y^n<z^n となって、成り立つと仮定した等式 x^n+y^n=z^n に反し矛盾する。
Case3):平面 R^2 上の半径1の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) が存在するとき。
このとき、確かに平面 R^2 上の円周Cで囲まれた円の外側に有理点 A(x/z,y/z) は存在し、(x/z)^2+(y/z)^2>1 を満たす。
また、3つの正整数x、y、zについて、1≦x<z かつ 1≦y<z だから、x^2+y^2<2z^2 から (x/z)^2+(y/z)^2<2 を得る。
故に、或る 1<s<√2 なる実数sが存在して、(x/z)^2+(y/z)^2=s^2 であり、( x/(sz) )^2+( y/(sz) )^2=1 となる。
平面 R^2 上において、3点 O(0,0)、B(x/(sz),y/(sz))、A(x/z,y/z) はその順に一直線上に並んでいるから、
θの定義から cos(θ)=x/(sz) かつ sin(θ)=y/(sz) かつ sz=√(x^2+y^2) であり、s・cos(θ)=x/z、s・sin(θ)=y/z。
仮定から n≧3 であり、s^n・cos^n(θ)=(x/z)^n、s^n・sin^n(θ)=(y/z)^n。
成り立つと仮定した等式から、(x/z)^n+(x/z)^n=1 だから、s^n・(cos^n(θ)+sin^n(θ))=s^n、
故に、X=cos^n(θ)+sin^n(θ) とすれば、s^n・X=s^n となる。
仮定から n≧3 であり 0<θ<π だから、Xの定義から X=cos^n(θ)+sin^n(θ)<cos^2(θ)+sin^2(θ)=1 であり、s^n・X<s^n となる。
しかし、これは s^n・X=s^n に反し、矛盾する。
Case1)、Case2)、Case3) から、起こり得る何れの場合も矛盾が生じる。
この矛盾は、3以上の整数n、及び3つの正整数 x、y、z が存在して、x^n+y^n=z^n が成り立つとしたことから生じたから、背理法が適用出来る。
背理法を適用すれば、どんな3以上の整数nと、どんな3つの正整数 x、y、z を取ろうとも、x^n+y^n=z^n とはなり得ない。
324: 2020/02/23(日)21:46:42.21 ID:gvCb7XkO(2/3) AAS
>>321
>菊池誠, 数と論理の物語 ? 不完全性定理について考えるた
>めの10の定理, 数学セミナー, 2019年4月号から連載中.
2019年12月号にあるが
「有理数体Qの完備化」をすれば「完備順序体」になる
それが、連続性の公理を満たす順序体としてのRの理解
「正しいRの理解の仕方」
432: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/03/11(水)17:30:45.21 ID:VzMFTLrl(5/5) AAS
それじゃ、時枝記事にたぶらかされても、仕方ないね〜w(^^;
544(1): 2020/03/15(日)15:18:16.21 ID:hQJVuqOP(1) AAS
Eテレ 素顔のギフテッド再
631(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/24(火)07:52:04.21 ID:1Hky7X6d(1/5) AAS
>>625 追加
(>>597より 引用開始)
ここで、出題の列Xと無関係な
見知らぬ "おっさん" が勝手に、n個の列 Y1〜Ynを作って
P(d<dmax)=n/(n+1)となるので、列 Y1〜Ynの箱を開けて
dmaxを知り、列Xにおいて dmax+1以降のしっぽの箱を開け
>>593と同様に
列Xの代表(rXとする)を知り、"rXd=Xd"と推測が的中することになる
(確率 P(d<dmax)=n/(n+1) 、即ち 1-ε でw )
これは、全くバカげた話ですw
(引用終り)
1.時枝記事は、>>370ご参照
2.”広中−岡のエピソードの教訓”(>>594)から得られる 時枝記事の抽象化
要するに「出題の可算無限長数列Xがあって、数列のしっぽの同値類から、うまく代表rXを選ぶことができて、d番目からさきが一致するようにできる」
というもの。ここに、dが決定番号です
3.見知らぬ "おっさん" が勝手に、数列Yを作って、同じように同値類から決定番号dmaxを得る
1列作った場合、Xとの2列の比較で、d<dmaxとなる確率P(d<dmax)=1/2
n列作った場合、Xとのn+1列の比較で、d<dmaxとなる確率P(d<dmax)=n/(n+1) (つまり、確率1-ε)
(n列の場合、dmaxはn列の決定番号の最大値です)
4.さて、dmax+1から先を開けるのを、dmax+1+k(k>=1)から先を開けると改良できる
そうすると、d番目からdmax+k までの箱が、ごっそり的中できる。kは任意だから、100兆個でも1000兆個でも、ごっそり的中できる
5.あきらかに、これはおかしい。そもそも、見知らぬ "おっさん"ってさ、出題者と何の関係もないでしょ
さらに、箱1つの実数を当てることさえ難しいのに、100兆個、1000兆個・・ の的中が 確率1-εなんてありえな〜い!
つづく
727: That's done 2020/03/27(金)17:05:08.21 ID:asHKGG7T(31/35) AAS
>>726
That's done. (それは終わったよ)
明日からHNとトリップ捨てて出直しなよ
918: 2020/07/08(水)08:48:25.21 ID:3+ERc/dG(1) AAS
>>915-917
そういうことにしておいてくれ。
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.044s