[過去ログ] 現代数学の系譜 カントル 超限集合論2 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
184: 2020/01/01(水)16:57:23.15 ID:E03EXCHH(5/10) AAS
問題
アレフ1(最初の非可算順序数)を
Zermelo構成で実現した場合
その濃度はいくらか
(可算で抑えられるかそれとも非可算か)
258(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/01/03(金)11:21:41.15 ID:ivt0JCXh(8/8) AAS
>>257
つづき
(参考)
外部リンク:ja.wikipedia.org
フォン・ノイマン宇宙
フォン・ノイマン宇宙 Vとは、遺伝的整礎集合全体のクラスである。
この集まりは、ZFCによって定義され、ZFCの公理に解釈や動機を与えるためにしばしば用いられる。
整礎集合の階数(rank)はその集合の全ての要素の階数より大きい最小の順序数として帰納的に定義される。 [1]
特に、空集合の階数は0で、順序数はそれ自身と等しい階数をもつ。
Vの集合はその階数に基づいて超限個の階層に分けられ、その階層は累積的階層と呼ばれる。
Vと集合論
ω を自然数全体の集合とすると、
Vωは遺伝的有限集合全体の集合であり、無限公理の成り立たない集合論モデルである。
Vω+ωはordinary mathematicsの宇宙であり、ツェルメロの集合論のモデルである。
k が到達不能基数ならば、VkはZFCのモデルである。
そして、Vk+1はモース-ケリー集合論のモデルである。
V は二つの理由によって、"全ての集合による集合"とは異なるものである。第一に、これは集合ではない。各階層Vαがそれぞれ集合でも、その和であるVは真のクラスであるからだ
(引用終り)
以上
264: 2020/01/03(金)12:01:00.15 ID:glmNLmg1(6/11) AAS
>>255
>Neumann流、Zermelo流に拘らずに、もっと一般に後者関数を考えるべき
>そうすれば、自然に後者関数のn→∞の極限の概念に到達するだろう
できませんね
そもそも後者関数を一般した場合
まっさきに考えるべきことは
いかにして>を構成するか、です
それを考えない限り無意味
Neumann流では∈をそのまま<とすることができる
しかしZermelo流では、それはできない
a<bと、「bからaへの有限長∈降下列が存在する」と
定義せねばならない
そして、上記のように定義すれば、そこから
Zermelo流のωを構築できるが、その場合
ωはシングルトンどころか有限集合にもなり得ない
と分かる
P.S.
>一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。
>(レーヴェンハイム=スコーレムの定理)
>二階述語論理によって定式化することで、
>ペアノシステムを同型の違いを除いて一意に定めることができる。
関係ない
Neumann流とZermelo流は別にモデルの違いではないから
292: 2020/01/09(木)23:11:05.15 ID:p2aiz/7n(6/6) AAS
ちゃんと書いといて下さいよ。
もう眠いんで、寝ます。お先に失礼致します。
317: 2020/02/22(土)17:09:16.15 ID:fVuNZJ03(5/6) AAS
>>316
もう、ここには決して書かないでくれ
私は君には全く興味がない
554(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2020/03/20(金)12:00:58.15 ID:+qJdNaLm(6/8) AAS
>>553
DR Pruss氏は下記で、conglomerabilityの正確な意味がいまいち分からんけど
要するに”nonmeasurable”で、測度論的確率から外れているということでしょう (^^;
外部リンク:en.wikipedia.org
Alexander Robert Pruss (born January 5, 1973) is a Canadian mathematician, philosopher, Professor of Philosophy and the Co-Director of Graduate Studies in Philosophy at Baylor University in Waco, Texas.
Pruss graduated from the University of Western Ontario in 1991 with a Bachelor of Science degree in Mathematics and Physics.
After earning a Ph.D. in Mathematics at the University of British Columbia in 1996 and publishing several papers in Proceedings of the American Mathematical Society and other mathematical journals,[4] he began graduate work in philosophy at the University of Pittsburgh.
外部リンク:books.google.co.jp
Infinity, Causation, and Paradox
著者: Alexander R. Pruss
(P76-77 に conglomerabilityの説明があるが、正確な定義は分からないが、
P76に”But typically, where there is no coutable additibity, there is lack of conglomerability(Scervish,Seidenfeld,and Kanade 1984).”
と記されているので、”coutable additibity ”即ち σ-加法性 と密接に関連した(多分”σ-加法性”を拡張した)概念だと思う)
(更に附言すれば、現代の測度論的確率が、σ-加法性をベースに成立っているとすれば、DR Pruss氏の指摘は、要するに”nonmeasurable”で、測度論的確率から外れているということでしょう (^^; )
627: 2020/03/23(月)20:12:37.15 ID:lDyHiL++(2/2) AAS
いやあ、よくもこれだけ恥を晒せるものだ
厚顔無恥のオリンピックがあったら金メダル量産だねw
648(1): 2020/03/25(水)22:14:04.15 ID:GjA6/puQ(1) AAS
かわいそうに
自分がバカであることも分らないなんて
920: 2020/07/10(金)08:12:30.15 ID:e3xNYXlE(2/80) AAS
ところで、セタは「箱入り無数目」で、いったん箱を選んだら
二度目以降は選んだ箱は変えないまま、箱の中身を入れ替える
と誤読してるのかもしれないな
もちろん、そんな、バカなことはないw
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.048s