[過去ログ]
現代数学の系譜 カントル 超限集合論 (1002レス)
現代数学の系譜 カントル 超限集合論 http://rio2016.5ch.net/test/read.cgi/math/1570237031/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
729: 現代数学の系譜 雑談 ◆e.a0E5TtKE [] 2019/12/14(土) 08:50:58.90 ID:s6Tab8iq >>728 補足 ノイマン構成で、下記のカントールの順序数が構成できる 具体的には、ノイマン構成で順序数ωが構成できる (当たり前だが) ノイマン構成とZermelo構成とは、その構成法から、一対一対応がつく (∵ 後者関数が少し違うだけなので、順序列としては当然同型になる(∈列として同型)) よって、Zermelo構成で順序数ωが構成できる 順序数ωを簡便に表現すれば、例えば {{…}} ってことです (この簡便化した表現をいくら攻撃しても、Zermelo
構成の順序数ωの存在は否定できないよ) QED(^^ https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0 順序数 (抜粋) 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), .............................. まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。 そして、すべての自然数が並び終えると、次に来るのが
最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。 その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。だがそれで終わりではない。 無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。 http://rio2016.5ch.net/test/read.cgi/math/1570237031/729
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 273 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.022s