[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
201(1): 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:12 ID:rpPbPz0q(4/7) AAS
>>193
>1)ツェルメロ構成での任意aの後者関数;
> suc(a) := {a}による構成は、正則性公理に反しない
> たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
Y
>2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
> 無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
> それはいわゆる自然数Nよりも、余計な元、
> 即ち、超限順序数に属するべき(有限でない)元が
> 生成され、含まれていることに同意しますか? Y/N
Y
>>195
>では、この超限順序数に属するべき(有限でない)元とは、何なのでしょうか?
馬鹿が考えるような{…{}…}ではないけどな
>ツェルメロ構成でできる集合は、任意aの後者関数;suc(a) := {a}以外は無いですね
相変わらず底抜けの馬鹿だな、貴様はwwwwwww
{}∈X∧(∀x∈X⇒{x}∈X)
(Xは空集合を要素とし、xがXの要素なら{x}もXの要素である)
という条件を満たすXについて
「yがXの要素なら、yは空集合か
y={x}で、Xの要素となるxが存在する」
∀y.((y∈X⇒y={}∨∃x.({x}=y∧x∈X))
とか思ってるだろ?w
そこが馬鹿だというんだよwww
実際には
「Xの空集合でないyで、
Xのいかなる要素xについても
{x}=yとならないものが存在する」
∃y.(y∈X∧¬(y={})∧∀x.(x∈X⇒¬({x}=y))
が成立しても矛盾はない
つまり
>超限順序数に属するべき(有限でない)元、それは、消去法で、
>超限回の空集合Φに対する後者関数による超限多重集合 {・・{Φ}・・}(ω+アルファ回{}多重)
>でなければならない
なんてことはいえない
「縁なき衆生は度し難し」
>それはお認めになるんですよね?
認めねぇよ この大馬鹿者めwwwwwww
202: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:21 ID:rpPbPz0q(5/7) AAS
>>201でいってるのは、
{}∈X∧(∀x∈X⇒{x}∈X)
を満たす集合が、
空集合でも単一要素の集合でもない集合を
要素としても全然問題ない、ということ
例えばa={{{}},{{{}}}}を要素としてもいい
但し、もしaを要素とするなら{a}も{{a}}も要素とせねばならない
そういうこと
では、もし
{}∈X∧(∀x∈X⇒{x}∈X) かつ
∀y.((y∈X⇒y={}∨∃x.({x}=y∧x∈X))
だったら、Xは、馬鹿のいう
{・・{Φ}・・} (無限重)
を要素にもつのか?
しかし、正則性公理の元ではそれはありそうもない
203: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:35 ID:rpPbPz0q(6/7) AAS
さて、今日の一曲は・・・これだ!
動画リンク[YouTube]
Emperor 最高だぜ!
204: 第六天魔王 ◆y7fKJ8VsjM 2019/10/07(月)19:49 ID:rpPbPz0q(7/7) AAS
そして、これも名曲
動画リンク[YouTube]
205(1): 2019/10/07(月)22:31 ID:cEmWDLJd(2/2) AAS
>>197
> それ、どこかで聞いたセリフかもね
> ツェルメロ以降の現代数学の100年前からの議論を、繰り返したいのですか?
そんな事はありません。
証明の全てを書く必要はありません。
そんな論文はなかなかありません。
たの論文なり教科書に載ってる結果を引用したいのなら構いません。
ただしその場合には数学の引用のルールに従って下さい。
引用する結果は
仮定 xがP(x)という条件が満たしているときQ(x)という条件がせいりつする。
の形の命題がxxxという論文、教科書等(この際websiteでもよし)で確認されている事が客観的に確認できる状況において
この命題をx=aについてapplyすればP(a)が確かに確認できるのでQ(a)を使う。
という形までしか許されません。私の>>18を見て下さい。
全部が全部証明はしてないでしょ?
206(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)00:10 ID:3SQHWkr4(1/5) AAS
>>205
>という形までしか許されません。私の>>18を見て下さい。
ああ、>>18をアップした人だったのかい?(^^
>たの論文なり教科書に載ってる結果を引用したいのなら構いません。
まあ、探してみるけどね
おれさ、おっちゃんみたいに、こんなバカ数学板に、ぐだぐだ記号で証明書く趣味ないんだよね
そもそもがさ、書かれた証明が初出なら、タイポとかありうるでしょ
で、真剣に読んだら、あっちにタイポ、こっちにタイポじゃ、赤ペン先生の添削やっているのと変わらんでしょ
まあ、自分が書いたら、もっと非道いだろうけどね(^^;
えーと、それで>>197に書いたけど
(引用開始)
じゃあ、それ、通常の自然数で、N⊂E かつ N≠Eですね
つまり、EはNに対して、真に大きい
つまり、EはNに対して、余分な元を含む
つまり、Nは全ての有限の元を含むので、任意nの空集合Φに対する後者関数による{}多重の集合 {・・{Φ}・・}(n回{}多重)を含むので、それ以外の余分な元を含む
それは、消去法で、有限でない元、つまり超限なる(整列したときに超限順序に属する)元ですよね
(引用終り)
これは、認めるんだね
念を押しておくよ
「EはNに対して、余分な元を含む」
「Nは全ての有限の元を含むので、任意nの空集合Φに対する後者関数による{}多重の集合 {・・{Φ}・・}(n回{}多重)を含むので、それ以外の余分な元を含む」
「それは、消去法で、有限でない元、つまり超限なる(整列したときに超限順序に属する)元です」
ってことな
207(1): 2019/10/08(火)00:39 ID:86YyLDZA(1) AAS
>>206
> (引用開始)
> じゃあ、それ、通常の自然数で、N⊂E かつ N≠Eですね
> つまり、EはNに対して、真に大きい
> つまり、EはNに対して、余分な元を含む
認められるのはここまでです。
> つまり、Nは全ての有限の元を含むので、
Nが全ての有限集合を含むわけないでしょ?
しかし
>任意nの空集合Φに対する後者関数による{}多重の集合 {・・{Φ}・・}(n回{}多重)を含むので、それ以外の余分な元を含む
多分これはEが>>192で定めたZ(n)を全て含むという意味なら成立しません。
しかし置換公理をうまく使ってZ(n)を全て含むFを再構成はできるのでそれは認めましょう。
しかし
> それは、消去法で、有限でない元、つまり超限なる(整列したときに超限順序に属する)元ですよね
ここがダメです。
ノイマンの方法ではEの中で順序数出ないもの、有限集合でないものを除けば求めるωが構成できました。
しかしこのFに同じ要領で
{x∈F|xはある有限ツェルメロ順序数}
と定めていらないものをカットしようとしても得られるものは
{Z(0),Z(1),‥}
にしかなりません。
ノイマンの方法を流用してもあなたの求めるΩにはなりません。
208: 第六天魔王 ◆y7fKJ8VsjM 2019/10/08(火)05:27 ID:bC9PKbug(1/3) AAS
>>206
>おれさ、おっちゃんみたいに、こんなバカ数学板に、
>ぐだぐだ記号で証明書く趣味ないんだよね
馬鹿はつたない日本語で数学的ウソを書く悪い趣味があるwww
それにしても>>206の日本語はヒドイな
貴様、マジで朝鮮人じゃないのか?
209: 第六天魔王 ◆y7fKJ8VsjM 2019/10/08(火)05:34 ID:bC9PKbug(2/3) AA×

210(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)07:22 ID:3SQHWkr4(2/5) AAS
>>207
>> つまり、Nは全ての有限の元を含むので、
>Nが全ての有限集合を含むわけないでしょ?
?
あなたは、>>127で
(引用開始)
ω' を
0∈ω' 、n∈ω' ⇒ n+1∈ω'
を満たすものに取れる。(∵無限公理)
ωを
ω={x∈ω' | xは有限集合かつ順序数}
と置くとωは自然数全体からなる集合となる。(∵分出公理)
QED.
(引用終り)
と書かれたでしょ?
N:自然数全体からなる集合ω
でしょ?
Nには、全ての自然数nが含まれるでしょ?
さてそこで
ノイマン構成で、任意aの後者関数;suc(a) :=a∪{a}と定め、また、現代数学の整列順序型(下記)を借用しましょう
整列順序型E:0,1,2,・・,n,・・,ω,ω+1,ω+2,・・,ω+n,・・
整列順序型N:0,1,2,・・,n,・・
ここに、Eは>>196での無限公理によって生成された自然数以外を含む集合を表わす記号から、Nは自然数の集合を表わす記号から
整列順序型E、Nたちは、各集合の元を整列させた順序列です(なお、ω+1などは、ωの後者ですが、略記させて頂きました。以下同じ)
同じことを、ツェルメロ構成で行います。任意aの後者関数;suc(a) :={a}と定めます
整列順序型E’:0,1,2,・・,n,・・,Ω,Ω+1,Ω+2,・・,Ω+n,・・
整列順序型N’:0,1,2,・・,n,・・
E’,Ωは、上記E,ωに対応します。N’も同様
但し、ツェルメロ構成の”0,1,2,・・,n”たちは、ノイマン構成とは後者関数が違います。が、記号の濫用です
つづく
211(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)07:23 ID:3SQHWkr4(3/5) AAS
>>210
つづき
ここで、現代数学の順序同型(下記)を借用しましょう
”整列順序型N’:0,1,2,・・,n,・・” は、ちょうど自然数N全体を渡り、自然数Nと順序同型です
これを認めれば、ツェルメロの整列順序型E’とノイマンの整列順序型Eとは、順序同型
全単射で、ツェルメロのΩが、ノイマンのωに対応する
よろしいでしょうか?
(参考)
外部リンク:ja.wikipedia.org
順序型
(抜粋)
整列順序型と順序数
整列集合の順序型を特に整列順序型と呼ぶ。α を順序数とし ∈α を α 上の所属関係とすると、(α, ∈α) は整列集合なので type(α, ∈α) は整列順序型である。逆に、任意の整列集合は必ずある順序数 α に対する (α, ∈α) と同型なので、整列順序型は必ずある順序数 α に対する type(α, ∈α) の形で表すことができる。
外部リンク:ja.wikipedia.org
整列集合
外部リンク:ja.wikipedia.org
順序集合
写像と順序
定義
S, T を順序集合とし、f: S → T を写像とする。このとき
・f が順序同型写像(英語版)であるとは、f が順序埋め込みな全単射である事を言う。
順序同型 f: S → T が存在するとき、S と T は順序同型あるいは単に同型であるという。
つづく
212: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)07:24 ID:3SQHWkr4(4/5) AAS
>>211
つづき
外部リンク:ja.wikipedia.org
順序数
(抜粋)
順序数の大小関係に関して次が成り立つ:
5.順序数からなる空でない集合には必ず最小元が存在する。
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。
そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。
(引用終り)
以上
213: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/08(火)07:34 ID:3SQHWkr4(5/5) AAS
>>211 追加引用
下記の和積が、通常の演算と同じなんでしょうね、多分(^^
外部リンク:ja.wikipedia.org
順序型
(抜粋)
5 順序型の演算
5.1 和
5.2 積
順序型の演算
順序型には和と積の演算を定義することができる。
和
ρ, σ を順序型とする。 全順序集合 (A, <A), (B, <B) を type(A, <A) = ρ, type(B, <B) = σ, A ∩ B = Φ をみたすように取り、A ∪ B 上の関係 <A +* <B を、
x (<A +* <B) y ⇔ x <A y または x <B y または <x, y> ∈ A × B
によって定義すれば、(A ∪ B, <A +* <B) は全順序集合であり、その順序型は (A, <A), (B, <B) の特定の取り方によらず一定である。そこで type(A ∪ B, <A +* <B) を ρ と σ の和といい、これを ρ + σ で表す。
直観的には、ρ + σ というのは (A, <A) の後ろに (B, <B) を並べてできる全順序集合の順序型である。
積
ρ, σ を順序型とする。 全順序集合 (A, <A), (B, <B) を type(A, <A) = ρ, type(B, <B) = σ をみたすように取り、A × B 上の関係 <A x* <B を、
<x1, y1> (<A x* <B) <x2, y2> ⇔ y1 <B y2 または (y1 = y2 かつ x1 <A x2)
によって定義すれば、(A × B, <A x* <B) は全順序集合であり、その順序型は (A, <A), (B, <B) の特定の取り方によらず一定である。そこで type(A × B, <A x* <B) を ρ と σ の積といい、これを ρ ・ σ で表す。
順序型の和と積について次が成り立つ:
1.(ρ + σ) + τ = ρ + (σ + τ) 。
2.(ρ ・ σ) ・ τ = ρ ・ (σ ・ τ) 。
3.ρ + 0 = 0 + ρ = ρ 。
4.ρ ・ 1 = 1 ・ ρ = ρ 。
5.ρ ・ 0 = 0 ・ ρ = 0 。
6.ρ ・ (σ + τ) = (ρ ・ σ) + (ρ ・ τ) 。
7.任意の順序数 α , β に対して、α + β = α + β かつ α ・ β = α ・ β 。 したがって整列順序型同士の和、積は整列順序型である。
(引用終り)
214(1): 2019/10/08(火)09:37 ID:ofPIORDH(1) AAS
>>210
>>211
> >>210
> つづき
>
> ここで、現代数学の順序同型(下記)を借用しましょう
> ”整列順序型N’:0,1,2,・・,n,・・” は、ちょうど自然数N全体を渡り、自然数Nと順序同型です
> これを認めれば、ツェルメロの整列順序型E’とノイマンの整列順序型Eとは、順序同型
> 全単射で、ツェルメロのΩが、ノイマンのωに対応する
>
> よろしいでしょうか?
>
ダメです。
あなたはωから先にダッシュをつけて区別しますが2以降はツェルメロ構成とノイマン構成では違うものでしょ?
なのでもうここから区別しないとダメです。
ノイマンの構成ではまず
0,1,2,3,‥‥
が順に構成され、それと無限公理から存在が保証されている
E= {0,1,2,‥‥} ∪ {いらないもの}
の存在が保証されています。
ここから分出公理で
{x∈E | x: finite, x: ordered inthe sence of Neumann}
という集合がとれますがコレでいらないもが削ぎ落とされて
求めるωがとれたのでした。
あなたが同様にというならこの
x: finite, x: ordered inthe sence of Neumann
の部分を何に書き換えるのかを明示しないと何をやってもダメです。
215: 第六天魔王 ◆y7fKJ8VsjM 2019/10/08(火)19:42 ID:bC9PKbug(3/3) AAS
馬鹿は根本的に分かってないなw
だいたい、無限公理のωが
suc(a) :=a∪{a}の繰り返しだけで
出来てると思うのが馬鹿www
その証拠に
ω=a∪{a}
となるaは存在しないだろ
ω=∪nなんだからさ
そういう意味でいえばツェルメロの構成法でも
ω’=∪n' (n'はツェルメロの自然数)
とせざるを得ないんで、馬鹿のいうような
{…{}…}
にはなりようがないw
216(4): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)11:48 ID:nHmzRvjt(1/5) AAS
>>214
”ここから分出公理で
{x∈E | x: finite, x: ordered inthe sence of Neumann}
という集合がとれますがコレでいらないもが削ぎ落とされて
求めるωがとれたのでした。”
↓
E''=E'\N = { x∈E' | x: transfinite, x: ordered in the sence of Zermelo }
という集合がとれます
コレでいらない自然数Nの元(finiteな元)が削ぎ落とされて
E'のZermelo構成の最小元として
求めるωがとれたのでした
(ここに、E'とNとは、>>211をご参照)
(参考)
外部リンク:en.wikipedia.org
Transfinite number
(抜粋)
Transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. The term transfinite was coined by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were, nevertheless, not finite.
Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as "infinite". However, the term "transfinite" also remains in use.
Definition
Any finite number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set (e.g., "the third man from the left" or "the twenty-seventh day of January").
When extended to transfinite numbers, these two concepts become distinct. A transfinite cardinal number is used to describe the size of an infinitely large set, while a transfinite ordinal is used to describe the location within an infinitely large set that's ordered. The most notable ordinal and cardinal numbers are, respectively:
つづく
217: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)11:52 ID:nHmzRvjt(2/5) AAS
>>216
つづき
・ω (omega) is defined as the lowest transfinite ordinal number and is the order type of the natural numbers under their usual linear ordering.
・Aleph-naught, アレフ_{0}, is defined as the first transfinite cardinal number and is the cardinality of the infinite set of the natural numbers. If the axiom of choice holds, the next higher cardinal number is aleph-one, アレフ_{1}.
If not, there may be other cardinals which are incomparable with aleph-one and larger than aleph-naught. But in any case, there are no cardinals between aleph-naught and aleph-one.
The continuum hypothesis states that there are no intermediate cardinal numbers between aleph-null and the cardinality of the continuum (the set of real numbers): that is to say, aleph-one is the cardinality of the set of real numbers. (If Zermelo?Fraenkel set theory (ZFC) is consistent, then neither the continuum hypothesis nor its negation can be proven from ZFC.)
(引用終り)
以上
注:「アレフ_{0}」などは、例のアレフ記号なのだが、文字化けするのです。Alephと書くと、記号でないAlephと区別できなので、カナ書きにした(゜ロ゜;。まあ、原文読んでください(^^
218: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)11:54 ID:nHmzRvjt(3/5) AAS
>>216 タイポ訂正
E'のZermelo構成の最小元として
↓
E'’のZermelo構成の最小元として
219: 2019/10/09(水)12:08 ID:0zG6excl(1) AAS
てす
220: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)12:16 ID:nHmzRvjt(4/5) AAS
おつ
221(1): 2019/10/09(水)12:34 ID:rFFSRADX(1) AAS
>>216
ダメですね。
まず
x: ordered number in the sence of Zermelo
が論理式として定義されていません。
>>18の定義にある通り、そここそがNeumannのordered numberのすごいところで多くの基礎論における順序数の構成でNeumannのスタイルが採用される所以です。
まぁ仮にそこがなんとかなったとしても
E'={0',1',2'‥‥}∪{他の元}
からZermelo ordered number以外を切り落としてもえられるのは
{0',1',2',‥}
の形にしかなりません。
コレはΩではないですよね?
222: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)15:22 ID:nHmzRvjt(5/5) AAS
>>216
>E''=E'\N
\:差集合(下記)の記号
まあ、大学では普通で、みな知っているけど
不思議に、「B − A」は使わない
多分、和集合がに、∪(カップとか読む)をつかうことから(+を使わない)、それとのバランスでしょうね(^^
外部リンク:ja.wikipedia.org
差集合
(抜粋)
差集合(さしゅうごう、英: set difference)とは、ある集合の中から別の集合に属する要素を取り去って得られる集合のことである。特に、全体集合 U を固定して、U からその部分集合 A の要素を取り去って得られる集合を A の補集合という。
定義
集合 B から集合 A に属する元を間引いて得られる集合を
B\A
または B − A と表現し、B から A を引いた差、差集合あるいは B における A の(相対)補集合と呼ぶ。
画像リンク
差集合 B − A のベン図による視覚化(左がA、右がB。):
B\A=A^c∪B
画像リンク
差集合 A − B のベン図による視覚化(左がA、右がB。):
A\B=A∪B^c
223: 2019/10/09(水)19:21 ID:PFECpNHL(1) AAS
自分の言いたいことだけ言って指摘は見て見ぬふりですか やれやれ
224(6): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)23:51 ID:2o5RsZjT(1/3) AAS
>>221
議論の前提として、ある程度、標準的に認められている現代数学の成果は、認めることにしましょうね(^^
ツェルメロから、ノイマンへ至道、それは幾人もの希代の天才たちが、十年以上の歳月をかけた思考の結晶だ
こんなバカ板のバカスレで、1からの数学ゼミやったら、100年かかっても少しも進みませんぜw(゜ロ゜;
ツェルメロ構成は、順序数(3.2.2 Ordinality)については、モストフスキー崩壊理論で、一応成立(OKってこと)
但し、基数(3.2.3 Cardinality)については、これじゃだめということですよ
それ、下記の”Zermelo’s Axiomatization of Set Theory Michael Hallett”に書いてあるよ
繰返すが、ωについては順序数の話(OKの方)ですよ(^^
(基数は、アレフの方の話で別ですよ。当然、お分かりでしょうけど)
外部リンク:plato.stanford.edu
外部リンク:plato.stanford.edu
Stanford Encyclopedia of Philosophy
Zermelo’s Axiomatization of Set Theory Michael Hallett
First published Tue Jul 2, 2013
(抜粋)
3. The Major Problems with Zermelo's System
3.1 Separation
3.2 Completeness
3.2.1 Representing Ordinary Mathematics
3.2.2 Ordinality
3.2.3 Cardinality
3.2.4 Ordinals
225: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)23:54 ID:2o5RsZjT(2/3) AAS
>>224
Stanford Encyclopedia of Philosophyがダブッたな
まあ、ご愛敬(^^
226(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/09(水)23:56 ID:2o5RsZjT(3/3) AAS
>>224
3.2.2 Ordinality
Thus, many of the representational problems faced by Zermelo's theory are solved at a stroke by Kuratowski's work, building as it does on Zermelo's own.
って話な(^^
227(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)00:04 ID:JCH5uyU5(1/7) AAS
>>224 訂正します
ツェルメロ構成は、順序数(3.2.2 Ordinality)については、モストフスキー崩壊理論で、一応成立(OKってこと)
↓
ツェルメロ構成は、順序数(3.2.2 Ordinality)については、Kuratowskで、一応成立(OKってこと)
(>>226より)
xxスキーとか、紛らわしいな って、オイオイ(゜ロ゜;
下記の人だろうね(^^
外部リンク:ja.wikipedia.org
カジミェシュ・クラトフスキ
(抜粋)
カジミェシュ・クラトフスキ(Kazimierz Kuratowski, 1896年2月2日 - 1980年6月18日)はポーランドの数学者。
概要
ロシア帝国領(当時)のワルシャワに生まれ、グラスゴー大学で工学を、ワルシャワ大学で数学を学ぶ。
ワルシャワ大学にて博士号を取得後、1927年にルヴフ工科大学教授に就任。
ルヴフ(現ウクライナ・リヴィウ)ではステファン・バナフ、スタニスワフ・ウラムらとともに測度論に関する研究を行う。
1934年にはワルシャワ大学数学科教授に就任。第二次世界大戦後はポーランド科学アカデミー副理事長等の要職を歴任し、ポーランド数学界の復興に尽力した。
位相空間論・集合論において多大な業績を残し、特に二巻本の大著『トポロジー Topologie』(第1巻1933年刊、第2巻1950年刊)は、ポーランド学派点集合トポロジーの金字塔である。
業績
・クラトフスキ・ツォルンの補題の発見
・順序対 (x,y)と集合 {{x},{x,y}}との同一性。
228(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)00:09 ID:JCH5uyU5(2/7) AAS
>>227
バナフは、バナッハ空間論の人。ウラムは、物理とも関連したいたと思うよ
外部リンク:ja.wikipedia.org
ステファン・バナフ
(抜粋)
ステファン・バナフ[1](Stefan Banach, 1892年3月30日 - 1945年8月31日)はポーランドの数学者。バナッハ空間論、実解析論、関数解析学、数学基礎論などで多大な業績をのこした。
外部リンク:ja.wikipedia.org
スタニスワフ・ウラム
(抜粋)
スタニスワフ・マルチン・ウラム(Stanis?aw Marcin Ulam, 1909年4月3日 - 1984年5月13日)は、アメリカ合衆国の数学者。ポーランド出身。数学の多くの分野に貢献しており、また水爆の機構の発案者としてその名を残している。
229: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/10(木)00:14 ID:JCH5uyU5(3/7) AAS
>>228
ウラム先生は、ソリトンの切っ掛けになった数値実験をした人ですね
外部リンク:ja.wikipedia.org
フェルミ・パスタ・ウラムの問題
(抜粋)
フェルミ・パスタ・ウラムの問題(ふぇるみ・ぱすた・うらむのもんだい、英: Fermi?Pasta?Ulam problem)とは、物理学における非線形な相互作用を有する格子模型におけるエネルギー分配の問題。FPU の問題とも呼ばれる。1950年代に、ロスアラモス研究所で電子計算機を用いてこの問題に取り組んだ 3 人の数理物理学者エンリコ・フェルミ、ジョン・パスタ(英語版)、スタニスワフ・ウラムに名に因む。
当初の予想では相互作用が非線形な系ではエルゴード性(英語版)によって、長時間経過後に各モードにエネルギーが等分配された熱力学的平衡状態に達するはずであったが、計算機実験の結果はそれに反し、初期状態のモードに戻る再帰現象が観測された。
後に、この再帰現象はKdV方程式の研究から可積分系におけるソリトンと関連した現象であることが明らかにされた。なお、電子計算機が物理学の研究に活用された初期の事例としても有名である。
ソリトン現象との関係
後に、ザブスキーとクルースカルは非線形波動の研究において、この再帰現象はソリトンの性質によるものであることを示した。
1965年に彼らは連続体近似を行ったモデルであるKdV方程式で数値計算を行い、ソリトンと呼ばれる孤立波解が存在し、複数個のソリトン同士が衝突する場合にも、波形が崩れず伝播することを示した。初期条件に余弦波を与えた場合には、複数の孤立波が出現し、衝突を繰り返すも、その性質を保ちつつ伝播し、一定時間経過後に初期状態に戻る現象が観測された。
上記のフェルミらが観測した再帰現象は、非線形性がある場合にも、KdV方程式のような可積分系に近い系の性質によって、再帰が起きたと理解される。
230(3): 2019/10/10(木)03:44 ID:64e05J/b(1/5) AAS
>>324
違います。
Zermelo ordinal number なるものが何かまだ誰も定義していません。
Z(0)=0, Z(1)={0}, Z(2)={{}},‥‥
はいいでしょう。
そのように定義したいなら定義してもいいでしょう。
ただしコレもキチンと論理式で定義しないとだめなんですよ。
しかしココまでは難しいけどできるのは確認済みです。
問題になっているのはω番目以降です。
まだだれも
Z(ω), Z(ω+1),‥‥
を定義した人はいません。
基数の全体cardinal numberについては
x:cardinal number :⇔ x:ordinal number ∧ ∀y<x(#y≠#x)
と定義され、
よつて整列順序クラスOrdの部分クラスなので自然に整列順序集合となり、
整列写像: ℵ:Ord→Cardが定義されます。
この対応からCardの超限帰納法を用いる定義
ℵ(0) :=0
ℵ(a+1) := min{x ∈Ord | #x>#a}
ℵ(a) := min{x ∈Ord | #x>#a} (if a is a limit number)
が誘導される事がわかります。
のでこれを定義に用いる事も出来ます。
どちらも大して難しい定義ではないのでどちらを定義に採用する事もあるとは思いますが、
ポイントは超限帰納法で定義するなら後者ℵ(a+1)をℵ(x) (x≦a)で表現するだけではダメでaがlimit numberのときのℵ(a)を定めないと超限帰納法は完成しません。
あなたはaがlimit numberの場合のΩ(a)を論理式を用いて定義しなければなりません。
上下前次1-新書関写板覧索設栞歴
あと 772 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.046s