[過去ログ] 現代数学の系譜 カントル 超限集合論 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
73: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)16:23 ID:JrhjRl4x(31/46) AAS
>>72
つづき
外部リンク:ja.wikipedia.org
無限公理
(抜粋)
定義
ZF公理系における公式な定義は次の通りである。
空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する:
解釈と帰結
上記定義では「無限」という言葉は用いられていないが、この公理によって(少なくとも1つの)無限集合の存在が保証されることになる。
まず定義中の集合 A(注:無限集合) は以下の性質を満たすことを確認できる。
(以下同様に繰り返す)
各手続きで得られた集合を要素とする集合を B:={Φ,{Φ},{Φ,{Φ}},・・・} とおくと、 B は A の部分集合である。
この手続きは何回でも繰り返すことができるが、もし有限回で終えた場合、 B は有限集合であり、 A≠Bである。
なぜならば定義により B∪{B}∈A であるが、B∪{B} not∈B となるからである。
一方 A が有限集合であれば、この手続きを繰り返すことで B が A よりも多くの要素をもつことができてしまう。
従って A は有限集合ではない(すなわち無限集合である)ため、
無限公理を採用すれば直ちに無限集合の存在を認めることになる。
上記の手続きはペアノの公理における自然数の構成方法と同様である。
ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合)
(引用終り)
以上
77(5): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)16:57 ID:JrhjRl4x(32/46) AAS
>>49
(引用開始)
>つまり、ノイマン構成とツェルメロ構成とは、一対一に対応していますよ。当たり前ですが
自然数の範囲では一対一に対応しますが、
Nに対する{・・・{Φ}・・・}は存在しません
(引用終り)
あなたのやろうとしていること、そもそも無理ゲーですよ
1)現代数学は、無限と無限操作を許容している(下記 フォン・ノイマン宇宙ご参照 )
2)0に冪集合の演算を超限回繰り返して得られる集合を許容している
(無限の演算とか無限の操作を許容するのは現代数学では当たり前。それで矛盾が起きないようにってことが重要)
3)冪集合を使って、{a}から{{a}}というカッコ{}を一つ集合を作ることができる(>>14に示しました)
4)だから、空集合Φに冪集合の演算を超限回繰り返して得られる集合 {・・・{Φ}・・・}({}が無限重になっている集合)は存在します
それ、フォン・ノイマン宇宙の説明に書いてある通り
5)正則性公理に反するという主張は、不成立。
そもそも、正則性公理は最小元の存在を規定するものであって、無限上昇列を禁ずるものでない。
(無限上昇列を禁じたら、現代数学にならんぞ)
その代表例が、ノイマンの自然数構成で、逆に辿れば、ωから0(=Φ)に至る降下列
これが、正則性公理に反するなどありえんよ
理屈は、ツェルメロ構成に同じだよ
6)空集合Φに冪集合の演算を超限回繰り返して得られる集合
{・・・{Φ}・・・}({}が無限重になっている集合)
を否定するなんて、
それ、無理ゲーですよ
(参考)
外部リンク:ja.wikipedia.org
正則性公理
(抜粋)
V=WF
ここで、Vはフォン・ノイマン宇宙を指し、WFは0に冪集合の演算を有限回、あるいは超限回繰り返して得られる集合全体のクラスを指す。
78(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)17:20 ID:JrhjRl4x(33/46) AAS
>>77
補足
”アレフ0 = ω は自然数全体の濃度であり、選択公理の下で最小の無限基数である.”
なんですよね
そして、アレフ0が、可算無限集合 自然数の濃度なんですよね
外部リンク[pdf]:konn-san.com
集合論への招待*
〜実数直線の集合論〜
石井大海
Saturday 4th June, 2016
P2
実は,集合の宇宙はこの順序数に沿ってボトムアップに構成されている,ということがわかります*2):
*2) これは実際には von Neumann による基礎の公理のお陰で証明出来るので,Cantor らの頃の公理化されていない集合論の定理で
はありません.しかし,こうした生成的な集合観は基礎の公理が提案される以前から集合論者の脳裡にあったものです.
P3
? アレフ0 = ω は自然数全体の濃度であり、選択公理の下で最小の無限基数である.
79(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)17:26 ID:JrhjRl4x(34/46) AAS
>>78
追加
”・N の順序型を ω で表す.最小の無限順序数で,N そのものと同一視できる.”
だな
自然数ノイマン構成
Φ=0∈1∈2∈3・・・∈n・・・∈N(=有限の自然数の全てを含む最小の集合)=ω(最小の極限順序数として)
ですよね
(参考)
外部リンク[pdf]:konn-san.com
集合論への招待*
〜実数直線の集合論〜
石井大海
Saturday 4th June, 2016
P2
・N の順序型を ω で表す.最小の無限順序数で,N そのものと同一視できる.
80(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)17:27 ID:JrhjRl4x(35/46) AAS
>>79
追加
列
Φ=0∈1∈2∈3・・・∈n・・・∈N
の長さが有限?
あなた
なんとかの素人さんですか?
81: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)17:29 ID:JrhjRl4x(36/46) AAS
>>77 タイポ訂正
3)冪集合を使って、{a}から{{a}}というカッコ{}を一つ集合を作ることができる(>>14に示しました)
↓
3)冪集合を使って、{a}から{{a}}というカッコ{}を一つ増やした集合を作ることができる(>>14に示しました)
83(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)18:24 ID:JrhjRl4x(37/46) AAS
>>14
(引用開始)
冪集合で P({a})={Φ,{a}}
つまり、 P({a})は{a}という一元集合の冪集合です
ここで、{Φ,{a}}から、{{a}}という集合を作ることができるということを認めることにしましょう
(注:{Φ,{a}}から、元Φを取り除くだけですけど(多分、分出公理を使う)
あるいは、 P({Φ,{a}})={Φ,{Φ},{{a}},{Φ,{a}}}としても、{{a}}は作ることができる )
(引用終り)
上記より、空集合の冪集合を繰返して順に集合を作り、{}の多重になった集合を作る
1回P(Φ)={Φ}→{Φ}(1重)
2回P({Φ})={Φ,{Φ}}→{{Φ}}(2重)
3回P({{Φ}})={Φ,{{Φ}}}→{{{Φ}}}(3重)
・
・
n回P({・・{Φ}・・})={Φ,{・・{Φ}・・}}→{{・・{Φ}・・}}(n重集合)
(ここに、{・・{Φ}・・}は、{}のn-1重集合)
フォン・ノイマン宇宙の「0に冪集合の演算を超限回繰り返して得られる集合」を認める
空集合Φに、ω回冪集合の演算を繰り返した集合として、ω重集合
ω回P({・・・{Φ}・・・})={Φ,{・・・{Φ}・・・}}→{{・・・{Φ}・・・}}(ω重集合)
”{{・・・{Φ}・・・}}(ω重集合)”を定義します
この集合の性質は、超限順序数ωの性質を引き継ぐものとします
つまり
Φ=0∈1∈2∈3・・・∈n・・・∈ω=N
で、この∈関係は、ノイマン構成と違って、集合演算としては推移的ではない
但し、単なる順序としての∈関係では、推移的です(順序の逆転はない)
これが、”{{・・・{Φ}・・・}}(ω重集合)”の定義です(^^
この話は、>>70の下記と符合していますね
つまり、「順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できる」ということです
つづく
84: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)18:24 ID:JrhjRl4x(38/46) AAS
>>83
つづき
外部リンク:ja.wikipedia.org
順序数
(抜粋)
注釈
2.^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。
その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。
ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。
これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。
だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。
ただし、整列集合の順序型と順序数は別のものになる。
詳細は「順序型」を参照。
以上
85: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)18:25 ID:JrhjRl4x(39/46) AAS
>>82
おっちゃん、どうも、ガロアスレのスレ主です。
おっちゃん、おやすみ(^^
91(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)21:31 ID:JrhjRl4x(40/46) AAS
>>77
ツェルメロ構成
批判はされているけれど(^^
外部リンク:plato.stanford.edu
Stanford Encyclopedia of Philosophy
Zermelo’s Axiomatization of Set Theory
First published Tue Jul 2, 2013
(抜粋)
3.2.1 Representing Ordinary Mathematics
The first obvious question concerns the representation of the ordinary number systems.
The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.
Moreover, it seems that, since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc.
What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.?
And assuming that one could define the real numbers, how does one characterise the field operations on them?
In addition, as mentioned previously, Zermelo has no natural way of representing either the general notions of relation or of function.
This means that his presentation of set theory has no natural way of representing those parts of mathematics (like real analysis) in which the general notion of function plays a fundamental part.
3.2.2 Ordinality
Zermelo's idea (1908a) was pursued by Kuratowski in the 1920s, thereby generalising and systematising work, not just of Zermelo, but of Hessenberg and Hausdorff too, giving a simple set of necessary and sufficient conditions for a subset ordering to represent a linear ordering.
He also argues forcefully that it is in fact undesirable for set theory to go beyond this and present a general theory of ordinal numbers:
(引用終り)
92(3): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)21:35 ID:JrhjRl4x(41/46) AAS
>>91 補足
”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.
Moreover, it seems that, since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc.
What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.?”
ツェルメロ自然数構成
批判はされているけれど(^^
・by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these
・since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc.
・何が不足なの? What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.?
まあ、ツェルメロ自然数構成から、無限集合が出来て、自然数とその冪集合から、有理数や実数や実関数などはできる
でも、批判はあった。それは、基礎論パイオニアの宿命でもあったかもしれない(^^
94(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)21:44 ID:JrhjRl4x(42/46) AAS
>>92 補足
”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.”
これで、無限集合ができるなら、{・・・{Φ}・・・}と無限多重の{}カッコが加わった集合が構成されうるってことですよ
それがなければ、有限集合にしかならんわな
だから、くどいけど、Stanford大 URL見ると Michael Hallett さんて方らしいが、ツェルメロ構成で実数まで到達できると言っているんだから
{・・・{Φ}・・・}と無限多重の{}カッコが加わった集合が構成されうるってことですよ(^^
96(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)21:53 ID:JrhjRl4x(43/46) AAS
>>93
無限集合って定義というか公理なんだからさ、そういう質問は関係ないよね(^^
それ、同じ質問、ノイマン構成でも同じ質問できるよね?
ノイマン構成で無限集合ができました
それで小さい元を左に大きい元を右に並べて、一番右の数字は何か?答えられないならなに? ノイマン構成の無限集合が存在できないとでも? (^^;
102(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)22:18 ID:JrhjRl4x(44/46) AAS
>>95
ありがとう
ええ、確かにそうです
ですが、その英文の記述は
{・・・{Φ}・・・}なる無限多重カッコ{}の集合を否定するものではないですよね
ツェルメロの自然数構成で、後者関数はあくまで、aに対して{a}ですからね
(下記の(a)と(b) とですね)
私は、N={Φ, {Φ}, {{Φ}}, …}は、自然数の集合として、決して否定するものではありませんよ
(追加引用)
外部リンク:plato.stanford.edu
Stanford Encyclopedia of Philosophy
Zermelo’s Axiomatization of Set Theory Michael Hallett
First published Tue Jul 2, 2013
(抜粋)
II.Axiom of Elementary Sets
This asserts
(a) the existence of a set which contains no members (denoted ‘0’ by Zermelo, now commonly denoted by ‘Φ’);
(b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and
(c) the existence, for any two objects a, b, of the unordered pair {a, b}, which has just a, b as its members.
103: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)22:25 ID:JrhjRl4x(45/46) AAS
>>99
>縦方向は必ず有限です
証明は?
正則性公理に反するですか?
104(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2019/10/05(土)22:36 ID:JrhjRl4x(46/46) AAS
>>98
>>ノイマン構成の無限集合が存在できないとでも?
>一番右の要素が存在しなくても集合として存在します
そういう禅問答なら
タマネギからっきょの皮むきですね
一皮むいても、その下にはまた皮があるよと(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.038s