[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
835
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)06:51 ID:KY2miv9A(1/23) AAS
>>834
(引用開始)
Ωは数列でなくて集合(= {1, 2, 3, 4, 5, 6}^N)なので
> Ω ∈ R^N
これは間違い
(引用終り)

あなたには、
Ω ⊂ R^N
と書いた方が分り易かったですか?w

>サイコロを1回投げるごとに「1つずつ」箱に入れられるかの答えには
>なっていないですよ

なってますよ
>>832 「ZFC公理系について:その2」で、自然数Nが数学的帰納法(ペアノの公理)を満たすことが証明されています。つまり、自然数Nは「1つずつ」で尽くされる!勿論、無限公理を認めた上ですがね)
しかし、そこは百歩譲って、
R^Nの元 r1r2,・・・ を構成するのと同じ方法で
Ω= {1, 2, 3, 4, 5, 6}^N が構成できる
Ω= {1, 2, 3, 4, 5, 6}^Nは、サイコロを無限回投げた結果です

(引用開始)
X1, X2, X3, ... と 1, 3, 2, 3, 5, ... が1対1対応なら
X1ならば(1, 1), X2ならば(2, 3), X3ならば(3, 2), ... と
(1, 1)ならばX1, (2, 3)ならばX2, (3, 2)ならばX3, ... が成り立つわけで
サイコロを無限回振れば必ず出目は1, 3, 2, 3, 5, ... になるとしか言えない
(引用終り)

何をどう誤読しているのか?
>>827より)
1,3,2,3,5・・・・ (サイコロの目による無限数列の一例)

ここで、”一例”とあるでしょ?(^^
これが全てじゃない

誤:サイコロを無限回振れば必ず出目は1, 3, 2, 3, 5, ... になるとしか言えない
正:サイコロを無限回振れば、出目は1, 3, 2, 3, 5, ... になる場合もある

ですよ
東大 会田茂樹 PDFのままじゃ、読めてないみたいだから
PDFの行間を補足しているだけですよ。下記PDFをしっかり読んでくださいね
(参考)
外部リンク[pdf]:www.ms.u-tokyo.ac.jp
数理統計学 講義資料 会田茂樹 東京大学
837
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)07:07 ID:KY2miv9A(2/23) AAS
>>833
(引用開始)
>サイコロの出目がランダムで、無限回サイコロ投げができます
箱の中身を確率変数とする戦略は勝つ戦略とは言えない。
おまえがやってることは「勝つ戦略は存在するか?」という問いに対して、
ただひたすらにナンセンスなだけ。
(引用終り)

違いますよ
1)下記時枝記事の「勝つ戦略」は、相手の「どんな実数を入れるかはまったく自由」に
 対しても、”勝てる”必勝戦略です
2)なお、”まったく自由”は、数学用語では”任意”です
 任意の方法で、箱にXi∈R なる数を入れるとする
3)Xiが無限回のサイコロ投げ(東大 会田茂樹 PDF>>835の通りで、サイコロは普通で投げた後とまるw)
 だと、∀i∈Nで P(Xi)=1/6です
 時枝記事の ∃i∈Nで P(Xi)=99/100 とはならない
 だから、”相手の「どんな実数を入れるかはまったく自由」”の前提内で、反例がある
4)戦略の話ではありません!! 戦略以前の、「どんな実数を入れるか」の話ですよ

(参考)
スレ47 2chスレ:math
(引用開始)
1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
(引用終り)
842
(1): 2019/09/08(日)09:49 ID:cMOAtiJl(1/20) AAS
>>835
>あなたには、
>Ω ⊂ R^N
>と書いた方が分り易かったですか?w
分かり易さの問題ではない
Ω ⊂ R^N と Ω ∈ R^N はまったく別ものである
近所の中学生に教えてもらえ
843
(4): 2019/09/08(日)10:06 ID:7MS+nwFK(2/4) AAS
>>835
> Ω= {1, 2, 3, 4, 5, 6}^Nは、サイコロを無限回投げた結果です

Ωは標本空間ですよ

外部リンク:ja.wikipedia.org標本空間
> 標本空間とは、確率論において、試行の結果全体の集合のことである。
> 確率空間を定義する上で最初に必要な定義である。
> 標本空間はふつう Ω で表す。
> 全事象という意味では U 、母集団からの標本という意味では S で表すことも多い。

それと
> この無限列一つ一つが根元事象とみなせる

外部リンク:ja.wikipedia.org事象_(確率論)
> 事象のうち、これ以上分けられない事象を根元事象という。

>>830
> 1回投げる毎に入れる。

無限列は「これ以上分けられない」のですよね?

> サイコロを無限回振れば、出目は1, 3, 2, 3, 5, ... になる場合もある

X1 : (1, 1) or (1, 2) or (1, 3) or (1, 4) or (1, 5) or (1, 6)
なら1対1対応になってない
847
(1): 2019/09/08(日)10:33 ID:cMOAtiJl(2/20) AAS
>>835
>(>>832 「ZFC公理系について:その2」で、自然数Nが数学的帰納法(ペアノの公理)を満たすことが証明されています。つまり、自然数Nは「1つずつ」で尽くされる!勿論、無限公理を認めた上ですがね)
「自然数Nは「1つずつ」で尽くされる。」が意味不明。
「自然数Nが数学的帰納法を満たす」からなぜ「自然数Nは「1つずつ」で尽くされる。」が言えるのか?
854: 2019/09/08(日)12:01 ID:cMOAtiJl(5/20) AAS
>>837
>3)Xiが無限回のサイコロ投げ(東大 会田茂樹 PDF>>835の通りで、サイコロは普通で投げた後とまるw)
> だと、∀i∈Nで P(Xi)=1/6です
それは任意の箱の中身を当てずっぽうで当てる確率。
時枝解法の確率は100個の候補から99個以上の当たり箱を選ぶ確率。つまり確率の対象がまったく異なるので
> 時枝記事の ∃i∈Nで P(Xi)=99/100 とはならない
は言えない。論理がまったくデタラメ。

> だから、”相手の「どんな実数を入れるかはまったく自由」”の前提内で、反例がある
論理がデタラメで反例になっていない。

>4)戦略の話ではありません!! 戦略以前の、「どんな実数を入れるか」の話ですよ
どんな実数を入れるかはまったく自由。
当てずっぽう戦略と時枝戦略では確率の対象が異なる。
おまえは当てずっぽう戦略がmustと言っている。回答者の戦略の自由を侵害しており論外。

サルは「当たるはずが無い」という直観を主張するばかりで時枝解法を見ようとしない。
自分が理解できない解法は見たくもないのだろう。
もうサルは失せろよ。数学板のレベルじゃない。
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.044s