[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
805(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/07(土)11:21 ID:8WzaZQff(16/27) AAS
>>799
笑えます
自明でしょ(^^
箱1,2,3,・・・・(箱の可算無限列)
↓↑
N 1,2,3,・・・・(自然数)
↓↑
X1,X2,X3,・・・・(確率変数)
↓↑
1,3,2,3,5・・・・ (サイコロの目による無限数列の一例)
ここに、”↓↑”は、上の集合と下の集合が全単射になることを意味する
(なにを、ごちゃごちゃと曲解しているのですかね〜w(^^; )
>> N = {1, 2, ... , n, ...}
>全ての自然数に対して{1, 2, ... , 6}の値をそれぞれ1つだけ指定することが
>可算無限個の箱全てにサイコロの目を入れるということです
当然でしょw
上記の通り
かつ、従来から言っている通り
(引用開始)
可算無限個の箱にサイコロの出目を入れるとして
A : 「1つずつ」入れる
B : 無限個をまとめて入れる
A or B : 数当て戦略は成り立つ
だから数当て戦略を否定したかったら
A and (not B)を考えるしか方法がないんだけれどね
(引用終り)
違いますよ
時枝の数当てには、厳密な数学の証明がないと批判されていますよ
(>>677-678ご参照)
つまり、サイコロの出目を入れると、各箱の確率は1/6になる。例外は無し
(>>664ご参照)
ところが、時枝は、例外的にある箱が確率99/100になるという
その「確率99/100」は、測度論に裏付けられていません!!(「確率99/100」がデタラメだということ)
以上
807: 2019/09/07(土)12:49 ID:rlsdE/6p(3/10) AAS
>>805
>その「確率99/100」は、測度論に裏付けられていません!!(「確率99/100」がデタラメだということ)
という間違いは、時枝解法が P(d1≧d2)≧1/2 と主張しているとの誤解が原因。
実際は P(d1,d2のいずれかをランダムに選んだ方≧他方)≧1/2 と主張しており、これは自然数の基本性質と一様分布の定義から否定し様が無い。
サルは頭が悪いので何度説明されても理解できない。サルに数学は無理。
815(1): 2019/09/07(土)18:42 ID:Wc0Vtz6m(2/5) AAS
>>805
> 箱1,2,3,・・・・(箱の可算無限列)
> ↓↑
> N 1,2,3,・・・・(自然数)
> ↓↑
> X1,X2,X3,・・・・(確率変数)
> ↓↑
> 1,3,2,3,5・・・・ (サイコロの目による無限数列の一例)
2番目と4番目が同じ番号3になっているから
{1, 2, 3, 4, 5, ... }と{1, 3, 2, 3, 5, ... }は全単射になっていないですよ
> 下の集合が
サイコロの目による無限数列{1, 3, 2, 3, 5, ... }は集合としてみると{1, 2, 3, 4, 5, 6}です
集合は同じ要素は区別しません
{1, 1, 1} = {1}, {1, 2, 2, 3, 3, 5, 5, 5} = {1, 2, 3, 5}
> 「確率99/100」がデタラメだということ
なぜ確率99/100になるかはさんざん説明されているじゃないか
理解しようとさえしないスレヌシズムはスレ主個人の問題でしょ
> サイコロの出目を入れると、各箱の確率は1/6になる
X = {1, 2, 3, 4, 5, 6}, P(X) = 1/6
スレ主のやっているように確率変数をつかうのなら数当てで当てる箱の候補はplayer2にとっては
X = {rD}, P(X) = 1 と仮定されるだけですよ
このような箱が列ごとに1つあってn列に分けた場合に仮定が正しくない箱がn個の内
2つ以上はないことが示せるから100列に分けた場合は(少なくとも)確率99/100
818(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/07(土)20:37 ID:8WzaZQff(18/27) AAS
>>816
(引用開始)
>2番目と4番目が同じ番号3になっているから
>{1, 2, 3, 4, 5, ... }と{1, 3, 2, 3, 5, ... }は全単射になっていないですよ
サルは全単射すら分かってなかった
(引用終り)
笑えるわ
イチャモン付けるにしても、もうちょっとましなイチャモンにしなよ
”某大学の数学科卒 修士課程修了”を自称する者がさ!w(下記引用)
(>>2より引用)
”私?某大学の数学科卒 修士課程修了ですが何か?”
(引用終り)
ID:Wc0Vtz6mみたいな素人の尻馬に乗ってどうするのかねーw
ほんま、アホやね
1, 3, 2, 3, 5, ... は、サイコロ投げの目の数列を表わしていることは明白でしょ
そんな程度のことは、確率論の確率論のテキストには大概書いてある(^^
(”1, 3, 2, 3, 5, ... ”は、集合ではなく、数列です。だから、この順を乱してはいけません。まして、同じ数字”3”があるからと一つに統合するのも御法度ですよ。やれやれ)
アホらしww(^^
(>>805再録します)
箱1,2,3,・・・・(箱の可算無限列)
↓↑
N 1,2,3,・・・・(自然数)
↓↑
X1,X2,X3,・・・・(確率変数)
↓↑
1,3,2,3,5・・・・ (サイコロの目による無限数列の一例)
ここに、”↓↑”は、上の集合と下の集合が全単射になることを意味する
(なにを、ごちゃごちゃと曲解しているのですかね〜w(^^; )
827(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/07(土)22:15 ID:8WzaZQff(24/27) AAS
>>823
>> 全単射
>なら逆も言わないといけないんですよ
いいえ、一対一対応であることをご確認ください
それで、「全単射」といえますよ
(参考)
外部リンク:kotobank.jp
コトバンク
ブリタニカ国際大百科事典 小項目事典の解説
一対一対応
いちたいいちたいおう
one-to-one correspondence
2つの集合 A ,B の元を互いに対応させるとき,A の任意の1つの元に B のただ1つの元が対応し,B の任意の1つの元に対し A の元がただ1つ対応するようにできるとき,この対応は一対一であるという。
このとき集合 A ,B は対等であるという。
この概念は,全単射の概念とまったく同等である。
たとえば,自然数全体の集合,偶数あるいは奇数全体の集合,平方数全体の集合は,それぞれ一対一に対応するので対等である。
一対一対応の概念は,G.カントルが無限の問題を解決するために,1870年代に,初めて数学上の基本概念として用いたものである。
(引用終り)
(>>805再録します)
箱1,2,3,・・・・(箱の可算無限列)
↓↑
N 1,2,3,・・・・(自然数)
↓↑
X1,X2,X3,・・・・(確率変数)
↓↑
1,3,2,3,5・・・・ (サイコロの目による無限数列の一例)
ここに、”↓↑”は、上の集合と下の集合が全単射になることを意味する
(なにを、ごちゃごちゃと曲解しているのですかね〜w(^^; )
<補足>
1)上記の順序を保ったまま、そのまま「一対一対応」になっています
2)最後の数列 1,3,2,3,5・・・・は、
細かく書けば、(1,1),(2,3),(3,2),(4,3),(5,5)・・・・
のように二次元で (n,X) nはサイコロ投げの番号で、Xは出たサイコロの目です。
しかし、お互い煩わしいだけでよ、こんな記載は。なので、簡便に書きました。お分かりか?w(^^
以上
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.047s