[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
444(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/31(土)20:18 ID:PbGhNKv4(12/30) AAS
>>443 追加
スレ73 2chスレ:math
(>>486より再録)
過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記)
(参考確率論の専門家さん ID:f9oaWn8A)
スレ20 2chスレ:math
519 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
>>518
X=(X_1,X_2,…)をR値の独立な確率変数とする.
時枝さんのやっていることは
無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める.
無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める.
P(f(X)=X_{g(X)})=99/100
ということだが,それの証明ってあるかな?
100個中99個だから99/100としか言ってるようにしか見えないけど.
522 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
面倒だから二列で考えると
Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布
実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると
P(h(Y)>h(Z))=1/2であれば嬉しい.
hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明
528 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
おれが問題視してるのはの可測性
正確にかくために確率空間(Ω,F,P)を設定しよう
Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である.
もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば
h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど
hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない
532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
>>530
>2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
(引用終り)
463(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/31(土)21:33 ID:PbGhNKv4(22/30) AAS
>>457
つー、>>443-444 (^^;
ええ、私も勝てる例を考えられます
数を入れる人は、πが好きで、すべての箱にπを入れるよう指示しそうしているところを見てしまった
なので、私は、ある箱を除いて、他を全て確認した上で、「未開封の箱はπだ」と言って勝ちました(^^
しかし、勝てる特異な例を作ったところで、数学の理論になっていませんね(あなたに同じ)
(参考)
スレ47 2chスレ:math
時枝問題(数学セミナー201511月号の記事)
1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.」
466(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/31(土)21:45 ID:PbGhNKv4(23/30) AAS
>>462
(引用開始)
>しかし、現代数学内のカンニング手段は、まだ、見つかっていませんね
時枝解法w
すなわち同値類の代表元をカンニングする解法
同値類が分かってないサルに理解できないだけの話w
(引用終り)
つー、>>443-444 (^^;
あなたの主張は下記
同値類→代表→代表と問題の数列を比較した決定番号→複数列の決定番号の大小から、カンニング正解率は100列で確率99/100だ!
その最後の確率99/100
下記Denis "I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}"
と同じでしょ?(^^(>>287ご参照)
で、厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私ね(^^
(そもそも、Denis氏発言に対する批判” but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”もあるよ)
(詳しくは、>>443-444 )
(>>241)
そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
477(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/31(土)22:47 ID:PbGhNKv4(29/30) AAS
>>474
>6列から選ぶ列の番号(1から6)も根元事象
>100列から選ぶ列の番号(1から100)も根元事象です
それで終わるなら、全然問題ないよ
但し、
同値類→代表→代表と問題の数列を比較した決定番号→複数列の決定番号の大小から、カンニング正解率は100列で確率99/100だ!
となると、風がふけばなんとやらで
いつの間にか、「カンニング正解率は100列で確率99/100だ!」となっているけど、ちょっとおかしい
「複数列の決定番号の大小」比較の確率計算のところの可測性が問題視されていますw(^^
(詳しくは、>>443-444 )
(>>241)
そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
487(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)00:37 ID:dvD9YE7H(4/39) AAS
>>477 補足
同値類→代表→代表と問題の数列を比較した決定番号→複数列の決定番号の大小から、カンニング正解率は100列で確率99/100だ!
となると、風がふけばなんとやらで
いつの間にか、「カンニング正解率は100列で確率99/100だ!」となっているけど、ちょっとおかしい
「複数列の決定番号の大小」比較の確率計算のところの可測性が問題視されていますw(^^
「測度論的確率論」(高校数学の美しい物語)としての、厳密な扱いが出来ていないよと、批判されています
(詳しくは、>>443-444 )
(>>241)
そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
(参考)
外部リンク:mathtrain.jp
高校数学の美しい物語
最終更新:2015/11/06
確率空間の定義と具体例(サイコロ,コイン)
(抜粋)
確率を厳密に扱うためには「測度論的確率論」を学ぶ必要があります。この記事では測度論的確率論の超入門として,確率を考える舞台となる「確率空間」の定義,意味,具体例について解説します。
測度論的確率論では,確率空間(三つ組(Ω,F,P))を舞台に,確率変数や期待値などいろいろな概念を考えていくことになります。
494(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)07:56 ID:dvD9YE7H(9/39) AAS
>>491 補足
> 4)このような、素朴な無限次元ベクトル空間で、2つのベクトルv1とv2との大きさを比較した
> ベクトルの大きさは、内積で定義する。一般に、内積は無限大に発散し、大小比較ができない!
ここ
(>>444より 確率論の専門家さん ID:f9oaWn8A)
スレ20 2chスレ:math
532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
> 2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
(引用終り)
この、”そもそも分布を持たない可能性すらある”は、
単にビタリの意味の非可測だけではなく
”無限大に発散”する非可測の可能性をも、含意していると思うよ(^^
582(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)18:24 ID:dvD9YE7H(27/39) AAS
>>563 補足
>>541>>548
ID:w/GSsWbvさんの
”え?ランダムの定義ってなに?そこでのPって何?正確に述べてみて。”
”で、確率ってなんなんだ?確率測度のことなら、それはそもそも存在するのか?ってのが疑問なだけなんだが。
一般用語で適当に述べるんじゃなくて、数学で扱えるような用語・定義が知りたいだけ。”
ここ、下記の確率論の専門家さんの言っていることと同じでしょ(^^;
(>>494より)
>>491 補足
> 4)このような、素朴な無限次元ベクトル空間で、2つのベクトルv1とv2との大きさを比較した
> ベクトルの大きさは、内積で定義する。一般に、内積は無限大に発散し、大小比較ができない!
ここ
(>>444より 確率論の専門家さん ID:f9oaWn8A)
スレ20 2chスレ:math
532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
> 2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
(引用終り)
この、”そもそも分布を持たない可能性すらある”は、
単にビタリの意味の非可測だけではなく
”無限大に発散”する非可測の可能性をも、含意していると思うよ(^^
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.032s