[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
401(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/30(金)23:33 ID:exryDrPV(19/20) AAS
>>400 追加訂正
注:n→∞ で可算無限に増えても、現代数学の確率論における確率変数の考えは同じです
*)注:n→∞ で可算無限に増えても、現代数学の確率論における確率変数の考えは同じです
な(^^;
分ると思うがw
404(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/31(土)07:18 ID:PbGhNKv4(1/30) AAS
>>400-402
ヒトの確率計算(高校数学B)
・箱が1つだったら、確率変数X
・箱がn個だったら、確率変数X1,X2,・・・,Xn
(下記ご参照)
(参考)
外部リンク[html]:tsukiyomiloveseverything.blogspot.com
高校数学 - 確率分布と統計的な推測 きのむくままに 2017年02月28日
(抜粋)
確率変数、確率分布
ある試行の結果に応じて値が決まる変数を確率変数という。また確率変数の取る値とその確率の対応関係を確率分布という。
外部リンク:mathtrain.jp
二項分布の平均と分散の二通りの証明 高校数学の美しい物語 2015/11/26
(抜粋)
確率 p で当たるような試行を(独立に)n 回繰り返す。そのうち k 回当たる確率は,nCkp^k(1?p)^n?k である。
二項分布 B(n,p) に従う確率変数 X の期待値は E[X]=np である。
(期待値の証明1)
i 回目に当たったときに 1,当たらないときに 0 を取る確率変数を Xi とおくと,
X=X1+X2+?+Xn であり,期待値の線形性から
E[X]=E[X1]+E[X2]+?+E[Xn]
右辺の各項はいずれも当たる確率 p と等しいので E[X]=np となる。
つづく
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.035s