[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
243
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/28(水)08:41 ID:MajO1X6X(8/14) AAS
>>241 補足

・例えば、マージャンで4人。4人だから、一様分布で、一人が勝つ確率は1/4だ
 どこがおかしいか?
・高校野球、出場はn校。一様分布で、ある高校が優勝する勝つ確率は1/nだ
どこがおかしいか?

当然、これが
成立つ前提があるんだよね

同じように
一様分布で、1/nだというところ
数学では、全体Ωが→∞のときは
扱いが間違っているよ(少なくとも証明がない)というのが
Alexander Pruss氏の指摘だよ
244
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/28(水)10:12 ID:CB3nbWMv(1/5) AAS
>>243 補足
(引用開始)
一様分布で、1/nだというところ
数学では、全体Ωが→∞のときは
扱いが間違っているよ(少なくとも証明がない)というのが
Alexander Pruss氏の指摘だよ
(引用終り)

簡単な例で説明しておくと
1)Ωを、下記の意味の標本空間(=全事象)とする
2)Ωが可算有限なら、最大値、最小値、平均値、標準偏差などが計算できる
3)しかし、Ωが可算有限でないならば、最大値、最小値、平均値、標準偏差などが計算できない場合がある
 (例えば、これらの値が、∞に発散することがあるなど)
4)それにもかかわらず、根元事象ωを取って、ω1とω2との大小比較の確率計算ができるのか?
  まあ、できる場合もあるでしょ
  例えば、”the Brown-Freiling argument against the Continuum Hypothesis 外部リンク:www.mdpi.com
  みたいな議論な (>>242で、Alexander Pruss氏が引用している)
5)だから、>>242のDenisの”I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}”みたいに言いたいなら、ちゃんと自分で証明しろってこと
  もちろん、「Ωが可算有限でない」つまり、∞に発散する場合などをちゃんと扱っての上でね(証明できないよというのが、おれの主張)
5)Denisみたく、”I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}”というだけでは、ヒトの数学になってない

(参考)
外部リンク:mathtrain.jp
高校数学の美しい物語
最終更新:2015/11/06
確率空間の定義と具体例(サイコロ,コイン)
(抜粋)
標本空間 Ω
Ω の各要素は根元事象と呼ばれます。 ω と書くことが多いです。

例3
[0,1] 上の一様分布(ランダムに 0 から 1 の間の実数を返すモデル)
Ω={ 0 以上 1 以下の実数全体 }
252: 2019/08/28(水)20:28 ID:l7VTYfyv(4/8) AAS
>>243
>・例えば、マージャンで4人。4人だから、一様分布で、一人が勝つ確率は1/4だ
>・高校野球、出場はn校。一様分布で、ある高校が優勝する勝つ確率は1/nだ
>どこがおかしいか?

そもそも事実認識が間違ってる

マージャンの4人の勝率が不均一でもOK
高校野球の優勝確率が不均一でもOK

要は上記の確率とは独立に、かつ一様に
マージャンのメンバーもしくは高校を
選べばいい

選んだメンバーが勝つ確率は
1/4*p1+1/4*p2+1/4*p3+1/4*p4
=1/4
(p1,p2,p3,p4は各メンバーの勝率)

同様に選んだ高校が優勝する確率は1/n

100列で、各列の決定番号が単独最大になる確率が
一律1/100である必要はない
各列の決定番号が単独最大になる確率と独立に、
かつ一様に列を選べばいい

それで、選んだ列の確率は1/100になる

>一様分布で、1/nだというところ
>数学では、全体Ωが→∞のときは
>扱いが間違っているよ

Ωは有限個の列だから∞にはならない

無限個の列をとったら、
最大の決定番号をとる列が
存在しない場合が生じる

そんなバカなことをするヤツはいないって
265: 2019/08/28(水)22:10 ID:7g/7/T6W(8/12) AAS
>>243
>・例えば、マージャンで4人。4人だから、一様分布で、一人が勝つ確率は1/4だ
> どこがおかしいか?
一様分布という仮定が見事におかしいw
おまえの屁理屈が正しければ、プロは初心者に勝ち越せないことになるw
266
(1): 2019/08/28(水)22:16 ID:7g/7/T6W(9/12) AAS
>>243
>数学では、全体Ωが→∞のときは
>扱いが間違っているよ(少なくとも証明がない)というのが
>Alexander Pruss氏の指摘だよ
どんな勘違いをしあらそんなアホなことが言えるのか?w
時枝解法における Ω={1,...,100} だw
100列のいずれかを一様分布で選択するからだw
「さて, 1〜100 のいずれかをランダムに選ぶ. 」

時枝記事には極限なんて一言も書かれていないw
妄想ザルが勝手に妄想してるだけw
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.045s