[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
216(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/27(火)20:51 ID:TQfuB7BH(13/23) AAS
>>130 補足
>バナッハ空間に値をとる測度はスペクトル測度 (spectral measure ) と呼ばれ、主に関数解析学においてスペクトル定理 (spectral theorem) などに用いられる。
へぇー
外部リンク:ja.wikipedia.org
スペクトル定理
(抜粋)
数学の、特に線型代数学や函数解析学の分野において、スペクトル定理(スペクトルていり、英: spectral theorem)とは、線型作用素あるいは行列に関する多くの結果である。大雑把に言うと、スペクトル定理は、作用素あるいは行列が対角化可能(すなわち、ある基底において対角行列として表現可能)となる条件を与えるものである。
外部リンク:ja.wikipedia.org
バナッハ空間
(抜粋)
数学におけるバナッハ空間(バナッハくうかん、英: Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。
解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 Lp-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。
外部リンク:ja.wikipedia.org
バナッハ空間の一覧
(抜粋)
数学の函数解析学の分野において、バナッハ空間(バナッハくうかん、英: Banach spaces)は最も重要な研究対象の一つである。その他の解析学の分野においても、実際に現れる空間の多くはバナッハ空間である。
目次
1 古典バナッハ空間
2 その他の解析の分野におけるバナッハ空間
3 反例を与えるバナッハ空間
その他の解析の分野におけるバナッハ空間
アスプルンド空間
ハーディ空間
有界平均振動(英語版)の空間 BMO
有界変動函数の空間 BV(Ω)
ソボレフ空間
バーンバウム=オルリッチ空間 LA(μ)
ヘルダー空間 Ck,α(Ω)
ローレンツ空間
218: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/27(火)20:57 ID:TQfuB7BH(14/23) AAS
>>216
へぇー(^^;
外部リンク:ja.wikipedia.org
小咄
・「隣の空き地に囲いが出来たんだってねぇ」「へー」
・「隣の空き地に塀が出来たんだってねぇ」「かっこいい」
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ
ぬこの手 ぬこTOP 0.044s