[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
835
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)06:51 ID:KY2miv9A(1/23) AAS
>>834
(引用開始)
Ωは数列でなくて集合(= {1, 2, 3, 4, 5, 6}^N)なので
> Ω ∈ R^N
これは間違い
(引用終り)

あなたには、
Ω ⊂ R^N
と書いた方が分り易かったですか?w

>サイコロを1回投げるごとに「1つずつ」箱に入れられるかの答えには
>なっていないですよ

なってますよ
>>832 「ZFC公理系について:その2」で、自然数Nが数学的帰納法(ペアノの公理)を満たすことが証明されています。つまり、自然数Nは「1つずつ」で尽くされる!勿論、無限公理を認めた上ですがね)
しかし、そこは百歩譲って、
R^Nの元 r1r2,・・・ を構成するのと同じ方法で
Ω= {1, 2, 3, 4, 5, 6}^N が構成できる
Ω= {1, 2, 3, 4, 5, 6}^Nは、サイコロを無限回投げた結果です

(引用開始)
X1, X2, X3, ... と 1, 3, 2, 3, 5, ... が1対1対応なら
X1ならば(1, 1), X2ならば(2, 3), X3ならば(3, 2), ... と
(1, 1)ならばX1, (2, 3)ならばX2, (3, 2)ならばX3, ... が成り立つわけで
サイコロを無限回振れば必ず出目は1, 3, 2, 3, 5, ... になるとしか言えない
(引用終り)

何をどう誤読しているのか?
>>827より)
1,3,2,3,5・・・・ (サイコロの目による無限数列の一例)

ここで、”一例”とあるでしょ?(^^
これが全てじゃない

誤:サイコロを無限回振れば必ず出目は1, 3, 2, 3, 5, ... になるとしか言えない
正:サイコロを無限回振れば、出目は1, 3, 2, 3, 5, ... になる場合もある

ですよ
東大 会田茂樹 PDFのままじゃ、読めてないみたいだから
PDFの行間を補足しているだけですよ。下記PDFをしっかり読んでくださいね
(参考)
外部リンク[pdf]:www.ms.u-tokyo.ac.jp
数理統計学 講義資料 会田茂樹 東京大学
837
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)07:07 ID:KY2miv9A(2/23) AAS
>>833
(引用開始)
>サイコロの出目がランダムで、無限回サイコロ投げができます
箱の中身を確率変数とする戦略は勝つ戦略とは言えない。
おまえがやってることは「勝つ戦略は存在するか?」という問いに対して、
ただひたすらにナンセンスなだけ。
(引用終り)

違いますよ
1)下記時枝記事の「勝つ戦略」は、相手の「どんな実数を入れるかはまったく自由」に
 対しても、”勝てる”必勝戦略です
2)なお、”まったく自由”は、数学用語では”任意”です
 任意の方法で、箱にXi∈R なる数を入れるとする
3)Xiが無限回のサイコロ投げ(東大 会田茂樹 PDF>>835の通りで、サイコロは普通で投げた後とまるw)
 だと、∀i∈Nで P(Xi)=1/6です
 時枝記事の ∃i∈Nで P(Xi)=99/100 とはならない
 だから、”相手の「どんな実数を入れるかはまったく自由」”の前提内で、反例がある
4)戦略の話ではありません!! 戦略以前の、「どんな実数を入れるか」の話ですよ

(参考)
スレ47 2chスレ:math
(引用開始)
1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
(引用終り)
838
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)07:35 ID:KY2miv9A(3/23) AAS
>>836
ピエロちゃんだね(間違っていたらごめん)
必死の取り繕い
ご苦労さん

前原昭二先生(>>821
の論文に突っかかるってかw
三歳児なのに、えらいねーw(^^

>>802
外部リンク:www.jstage.jst.go.jp
自然数論 の無 矛盾性証明の必要性
前原昭二 筑波大学数学系 科学基礎論研究 Vol.14 1979
(抜粋)
P107
§1 自然数論の無矛盾性
数学的帰納法を含む自然数の理論が矛盾を含まないと
いうことの証明は,ゲンツェンによる次の論文において
はじめて与えられた:
G.Gentzen, Die Widerspruchsfreiheit der reinen
Zahlentheorie. Math. Ann. 112 (1936).

P108
以下,ゲソツェン[§1のはじめに挙げた論文]にし
たがって,このことを説明しようというのが,この小論
の目標である。
答えを先に言ってしまおう。
直観主義的自然数論の疑わしさの根元は,すべて
"……ならば……"
という論理用語に関係した推論にある。
もう少し精密に表現すれば,"ならば"の推論と否定
の推論に疑わしさがある,と言うべきである。しかし,
"……でない"という形の命題は"……ならば矛盾"と
表現しても同義であることから,否定は"ならば"の特
殊な場合と理解して,すべてを"ならば"のところに集
約しておいたのである。
さて,"ならば"についての疑わしさは,排申律の疑
わしさに較べて,その説明は複雑になる。
839: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)07:39 ID:KY2miv9A(4/23) AAS
>>838 タイポ訂正

さて,"ならば"についての疑わしさは,排申律の疑
 ↓
さて,"ならば"についての疑わしさは,排中律の疑

まあ、分かると思うが
なお、このOCRの誤読は、元のPDFのままです
jstageの元PDFで誤読しているってことね(^^
840
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)07:57 ID:KY2miv9A(5/23) AAS
メモ
外部リンク:www.ipmu.jp
量子重力には対称性はない ― 大栗機構長らが証明
2019年6月19日
東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU)
(抜粋)
1. 発表概要
東京大学国際高等研究所カブリ数物連携宇宙研究機構(Kavli IPMU) の大栗博司 (おおぐりひろし) 機構長は、マサチューセッツ工科大学物理学教室の Daniel Harlow 助教と共同で、重力と量子力学を統一する理論では、素粒子論の重要な原理であった対称性がすべて破れてしまうことを、ホログラフィー原理を用いて証明しました。
この証明にあたっては、量子コンピューターで失われた情報を回復する鍵とされる「量子誤り訂正符号」とホログラフィー原理との間に近年発見された関係性を用いるという新たな手法が用いられました。
本研究成果は、素粒子の究極の統一理論の構築に大きく貢献するものであるとともに、近年注目される量子コンピューターの発展にも寄与すると期待され、アメリカ物理学会の発行するフィジカル・レビュー・レター誌 (Physical Review Letters) に2019年5月17日付で掲載され、成果の重要性から注目論文(Editors’ Suggestion)に選ばれました。

画像リンク

図1. 「量子重力理論は対称性を持たない」ことを背理法で証明する図。もし対称性があるとすると、それは図の灰色で塗られた部分にしか作用せず、中心の黒い点のまわりの状態には変化を起こさない。円周を細かく分けていくと、灰色の部分をいくらでも小さくできるので、対称性には、どこにも作用しないことになる。これは矛盾である。(Credit:Harlow and Ooguri)

2. 発表内容

物理学にとって重要な「対称性」の概念について、量子力学で成り立っている「対称性」が重力を組み合わせてしまうことで成り立たなくなることが、以前より指摘されていました。しかしながら、この指摘について厳密な証明はされておらず、推測の域を出ていませんでした。

つづく
841: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)07:58 ID:KY2miv9A(6/23) AAS
>>840
つづき

今回、Kavli IPMU の大栗博司 (おおぐりひろし) 機構長は、マサチューセッツ工科大学物理学教室の Daniel Harlow 助教と共同で、重力と量子力学を統一する理論では、対称性がすべて破れてしまうことを、ホログラフィー原理を用いて証明しました。ホログラフィー原理とは、量子力学の記述するミクロな世界での重力の振る舞いを、重力を含まない量子力学の問題として説明することを可能とする理論です。
中でも、1997年にプリンストン高等研究所のファン・マルダセナ (Juan Maldacena) 氏が発表した AdS/CFT 対応はホログラフィー原理を厳密に定義した代表的なものとして知られています。

今回の証明により、陽子崩壊の示唆やモノポールの存在が予測されました。しかしながら、陽子崩壊の崩壊時間を定義するまでには至っていません。対称性に関しても、どのように破られるかを定量的に示すには至っていないことから、研究グループは今後更に研究を進めていく予定です。

本研究に関して大栗機構長は「対称性は自然の基本的な概念であると一般的に考えられてきました。そして、多くの物理学者は、自然界には美しい一連の法則性が存在しなければならないと考えており、美しさを定量化する1つの方法は対称性であると考えています。
しかし、今回私達は、量子力学と重力が統一されている最も基本的なレベルの自然の法則では、対称性が保たれないことを明らかにしました。つまり、物理学者達が抱いてきた対称性に対する信念が間違っていることを示したのです」と述べています。

本研究成果は、アメリカ物理学会の発行するフィジカル・レビュー・レター誌 (Physical Review Letters) に2019年5月17日付で公開され、成果の重要性から注目論文 (Editors’ Suggestion) に選ばれました。

3. 発表雑誌
雑誌名:Physical Review Letters, 122, 191601 (2019)
論文タイトル:Constraints on Symmetries from Holography
著者: Daniel Harlow (1), Hirosi Ooguri (2,3)

DOI: 外部リンク:doi.org (2019年5月17日掲載)
外部リンク:journals.aps.org
論文のアブストラクト(Physical Review Letters のページ)
外部リンク:arxiv.org
プレプリント (arXiv.orgのウェブページ)
以上
844: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)10:08 ID:KY2miv9A(7/23) AAS
>>817
筑波大 若林誠一郎”選択公理を
用いないと証明できない. 選択公理を公理として採用することは,
一見奇異に見えるバナッハ・タルスキーのパラドックスを数学の定理として認めることになる”(下記)

逆に、選択公理を使えば、パラドックスが正統化されるような幻想を抱かせる効果が出るみたいww(^^
外部リンク[html]:www.math.tsukuba.ac.jp
若林 誠一郎 筑波大学名誉教授
外部リンク[pdf]:www.math.tsukuba.ac.jp
面積・体積って何?−バナッハ・タルスキーのパラドックス (200611, 竹園高校) 若林誠一郎
(下記とほぼ同じ内容だが、高校向けにやさしく書いてある)
外部リンク[pdf]:www.math.tsukuba.ac.jp
バナッハ・タルスキーのパラドックス (2006年度数理物質科学コロキュウム)
若林誠一郎
(抜粋)
定理 (Banach-Tarski(バナッハ・タルスキー) のパラドックス, 1924):
(1) 球を有限個の小片に分けて, それらをつなぎ合わせて元の球と同じ
大きさの球を2ヶ再構成できる.
(2) グリーンピースを有限個の小片に分けて, それらをつなぎ合わせて
太陽と同じ大きさの球を再構成できる.

注意 3: バナッハ・タルスキーの定理で, 少なくとも1つの小片はルベー
グ可測でない.
3 選択公理を用いないと多くの重要な結果が証明できなくなる. バナッ
ハ・タルスキーの定理 (パラドックス) を証明するには, 選択公理を用
いる必要がある. またルベーグ可測でない集合の存在も, 選択公理を
用いないと証明できない. 選択公理を公理として採用することは, 一
見奇異に見えるバナッハ・タルスキーのパラドックスを数学の定理と
して認めることになる.

4. バナッハ・タルスキーの定理

定理 3 ((AC)): A, B ⊂ R
3 かつ A, B は有界 (原点を中心とする十分大き
い半径の球に含まれる) かつ内点をもつ (A に含まれる球が存在し, また
B に含まれる球も存在する) と仮定する. そのとき, 有限個の集合 A1, ・ ・ ・ ,
AN , B1, ・ ・ ・ , BN で次を満たすものが存在する

注意 7: 例えば指定された半径をもつ球やもっと一般に内点をもつ有界な
立体を, 半径1の球を有限個の小片に分けてつなぎ合わせて作ることがで
きること意味する.
845
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)10:21 ID:KY2miv9A(8/23) AAS
>>842
>Ω ⊂ R^N と Ω ∈ R^N はまったく別ものである

「まったく別もの」ではない
詳しくは、>>832の「ZFC公理系について:その1(及び2)」を読んでみな

簡単に書くと
1)二つの集合A,Bで、A ∈ B → A ⊂ B
 ∵ 集合Aの全ての元aは、集合Bの元だから
2)二つの集合A,Bで、A ⊂ B → A ∈ B
 ∵ 集合B中で、集合Aの全ての元aを集めて、内部に集合Aを構成できるから
3)”A ∈ B → A ⊂ B” & ”A ⊂ B → A ∈ B”が成立つから、二つは同値
QED
846
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)10:32 ID:KY2miv9A(9/23) AAS
>>843
なにか、迷路に迷い込んでいますね
富士の樹海
現代数学は、あなたにとって

下記、東大 会田茂樹を取り上げて、私が言いたいことは
只一点、「無限回のサイコロ投げ」が可能で
「無限回のサイコロ投げ、1回投げる毎に入れる。それだけですよ」

それで
(引用開始)
>>830
> 1回投げる毎に入れる。
無限列は「これ以上分けられない」のですよね?
(引用終り)

そういう論法なら
時枝のΩ = R^N
この無限列は「これ以上分けられない」のですよね?
なんで、勝手に並べ変える?
ある一つ箱だけ分離して、その箱の的中確率99/100?
残り、可算無限個は、サイコロの目の入れたら、確率論通り1/6?
どうして、ある一つ箱と残り可算無限個に分けることができるの?
無限列は「これ以上分けられない」のですよね?

(再録(>>737より))
>>730 東大 会田茂樹 PDFもご参照下さい
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1〜6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる. すなわち
Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }」
さらに、追加で会田茂樹 PDF P3 10行目
「なんらかのランダムな現象や試行があり、その結果得られる数値一つ一つが
根元事象を、数値全体が標本空間になっていることを注意しておきます. このランダムな数値が確率変数,
ランダムな数値がどのように分布しているかを表すのが確率分布になります.」
も見ておいてください
(引用終り)

これで尽きているでしょ?
無限回のサイコロ投げ、1回投げる毎に入れる。それだけですよ
外部リンク[pdf]:www.ms.u-tokyo.ac.jp
数理統計学 講義資料 会田茂樹 東京大学
850
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)10:59 ID:KY2miv9A(10/23) AAS
>>847
(引用開始)
>(>>832 「ZFC公理系について:その2」で、自然数Nが数学的帰納法(ペアノの公理)を満たすことが証明されています。つまり、自然数Nは「1つずつ」で尽くされる!勿論、無限公理を認めた上ですがね)
「自然数Nは「1つずつ」で尽くされる。」が意味不明。
「自然数Nが数学的帰納法を満たす」からなぜ「自然数Nは「1つずつ」で尽くされる。」が言えるのか?
(引用終り)

下記もご参照ください
1)数学的帰納法 P(0)とP(n)で成り立ち、nの後者 n+1(下記ではn+)でP(n+1)が成立つ→全ての自然数Nで成立つ
2)これを公理として認めるわけですから、”「P(k) ⇒ P(k + 1)」で自然数全体に至る”を認めるということです
QED

>>832より)
外部リンク:tech-blog.rei-frontier.jp
Rei Frontier Tech Blog
2017-11-09
ZFC公理系について:その2
(抜粋)
ペアノの公理
前節の議論によって、我々はついに当初の目的であった「自然数の全体」という、具体的でかつ非自明な集合を手に入れることができました。

今我々が構成した"集合論的自然数"が"普通の自然数"と同じような"算術的性質"をもつことが示されるでしょうか?

自然数のもつべき"算術的性質"には、大小関係、足し算掛け算等々いろいろありますが、それらはいくつかの基本的な性質から証明できます(長くなるので、本記事では扱いません)。そのような基本的性質として挙げられるのが、ペアノ(Peano)の公理です。
すなわち、集合aがつぎの命題たちを満たしていれば、aは"自然数の集合の算術的性質"を満たすことが示されます:

補題2の証明で活躍した公理(P3)は数学的帰納法の原理とも呼ばれています。実際、Peanoの公理は高校数学などでもお馴染みの数学的帰納法の定理を含んでいます:

つづく
851: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)11:00 ID:KY2miv9A(11/23) AAS
>>850
つづき

外部リンク:ja.wikipedia.org
数学的帰納法
(抜粋)
数学的帰納法は自然数に関する命題 P(n) が全ての自然数 n に対して成り立っている事を証明するための、次のような証明手法である[注 1]。
1.P(1) が成り立つ事を示す。
2.任意の自然数 k に対して、「P(k) ⇒ P(k + 1)」が成り立つ事を示す。
3.以上の議論から任意の自然数 n について P(n) が成り立つ事を結論づける。
上で1と2から3を結論づける所が数学的帰納法に当たる。自然数に関するペアノの公理の中に、ほぼ等価なものが含まれている。

高校の教科書等の初等的な解説書ではドミノ倒しに例えて数学的帰納法を説明しているものも多い。
以上の議論はあくまで数学的帰納法が成り立つ理由の直観的説明であって、1, 2 と 3 の間にはギャップがある。詳しくは後述の「数学的帰納法の形式的な取り扱い」の項目を参照されたい。

数学的帰納法の形式的な取り扱い
有限回のステップでは有限個の n に対してしか P(n) を結論づける事ができず、「無限個ある自然数全てに対して P(n) が成り立つ」という数学的帰納法の結論について有限の長さの証明が与えられたとはいえない。これが前述した直観的説明におけるギャップである。
ペアノ算術などの形式的な体系では、数学的帰納法を証明に用いてよいことが公理として仮定されるのが普通である。つまり、形式的には、自然数の性質から数学的帰納法の正しさが証明できるのではなく、逆に自然数の本質的な性質を与える推論規則として数学的帰納法が仮定される、ということになる。

(引用終り)
以上
852
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)11:11 ID:KY2miv9A(12/23) AAS
>>849
(引用開始)
>>845
> 1)二つの集合A,Bで、A ∈ B → A ⊂ B
> ∵ 集合Aの全ての元aは、集合Bの元だから
反例:A={0},B={{0}}
A∈B だが、A⊂B ではない
∵集合Aの元0は、集合Bの元ではない。
(引用終り)

これ、ピエロちゃんかな?(^^
それ、なんか、勘違いしていますよ(^^;
下記の定義を再確認してください

外部リンク:ja.wikipedia.org
部分集合
(抜粋)
定義
集合 A の要素はすべて集合 B の要素でもあるとき、
A は B の部分集合であるといい、
A ⊂= B (A ⊆ B )
で表す。
A が B の部分集合であることを、「A は B に(部分集合として)含まれる(contained; 包含される)」、「A は B に包まれる(included; 包摂あるいは内包される)」などということもある。
853
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)11:16 ID:KY2miv9A(13/23) AAS
>>852 追加
>∵集合Aの元0は、集合Bの元ではない。

そうそう
下記ですね
元0は、空集合でしょw(^^;

外部リンク:ja.wikipedia.org
空集合
(抜粋)
性質

全ての集合は空集合を部分集合として含む
864: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)14:14 ID:KY2miv9A(14/23) AAS
メモ
外部リンク:matome.naver.jp/odai/2143648719663632301
ABC予想って結局どうなったの?ちょっと整理してみた。
2012年9月17日に日本の報道各社が一斉に報じた「ABC予想解明か」というニュース、覚えてますか?
ここでは、ABC予想のニュースのその後について、最新情報を中心にまとめていきます。
更新日: 2019年05月02日
この記事は私がまとめました
abc_conjectureさん
865
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)14:26 ID:KY2miv9A(15/23) AAS
>>858
いや確かに
正則性公理を採用しているから
x not∈ x
だな

だから、>>845
”2)二つの集合A,Bで、A ⊂ B → A ∈ B”
は、不成立
(反例としては、A ⊂ A → A not∈ A だな)

だから、”同値”も撤回する
但し、”「まったく別もの」ではない”は、正しい(^^

外部リンク:ja.wikipedia.org
正則性公理

・∀xについて、無限下降列である x ∈ x_ 1 ∈ x_ 2 ∈ ... は存在しない。
866
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)14:28 ID:KY2miv9A(16/23) AAS
再度言おう
スレ75?2chスレ:math時枝記事の手法など
プロ数学者は、だれも相手にしない
不成立に見えて、自明に不成立だから w(^^

スレ75?2chスレ:math
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
 サイコロ,コインなら、確率空間は、下記の定義の通り。
 サイコロΩ={1,2,3,4,5,6}で、1〜6の数が箱に入り、各確率1/6
 コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn
 i.i.d. 独立同分布とすると、各箱は上記1の通り
(2’箱がn+1個。確率変数X1,X2,・・・,Xn+1
 i.i.d. 独立同分布とすると、各箱は上記1の通り)??
3.箱が可算無限個。確率変数X1,X2,・・・ →X∞
 i.i.d. 独立同分布とすると、各箱は上記1の通り
4.これは、数学的帰納法の証明にもなっている。時枝は、これで尽きている。上記1〜3のどの箱の確率変数も例外なし!
QED(^^
(参考)
外部リンク:mathtrain.jp
確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06外部リンク:ja.wikipedia.org
数学的帰納法
867
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)14:29 ID:KY2miv9A(17/23) AAS
<i.i.d. 独立同分布>
・現代確率論が、独立な確率変数の無限族を扱えることは、下記時枝記事にもある
(時枝は、「箱にXnのランダムな値を入れられて」と表現しているが、数学では箱自身をXnと考えることができる(念のための注))

・箱が1つある。それをXiとする。サイコロの目を入れる。自明にP(Xi)=1/6
・その回りに箱を1つ増やす。独立で同分布として、サイコロの目を入れるとして、同じく確率は1/6。
・箱をn個増やす。上記同様
・箱をn+1個増やす。上記同様
・数学的帰納法により、全ての自然数で成立つ。つまりは、時枝記事の数列に適用できるということ
(自明だが念のため)・そして、時枝先生は、反省しています。 (下記)「もうちょっと面白いのは,独立性に関する反省だと思う.その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,当てられっこないではないか−−他の箱から情報は一切もらえないのだから」
(下記の独立の定義より)
・独立だから、Xi以外の箱の変数の値が分かっても、Xiの確率は変化せず、P(Xi)=1/6のまま
・”i.i.d. 独立同分布”の仮定より、全てのiについて上記は成立する
QED

(参考)
スレ47?2chスレ:math
(抜粋)
数学セミナー201511月号P37 時枝記事より
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
(引用終り)

外部リンク:ja.wikipedia.org
独立 (確率論)
(抜粋)
2つの事象が独立といった場合は、片方の事象が起きたことが分かっても、もう片方の事象の起きる確率が変化しないことを意味する。2つの確率変数が独立といった場合は、片方の変数の値が分かっても、もう片方の変数の確率分布が変化しないことを意味する[1]。

事象 A と B が独立であるとは、事象 B の起こることが事象 A の起こる確率に一切の影響を与えないことを意味する。
875
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)17:48 ID:KY2miv9A(18/23) AAS
>>867 補足追加

1〜pまでの数をランダムに箱に入れる
(例えば、1〜pまでの整数の札を、毎回シャッフルして選ぶ。選んだ数を書いた紙を箱に入れる。札は戻して、繰返す。)
箱は、取り敢ず有限n個とする。

d=1,  2,   3,   4,  ・・・,  n-1,       n
*)1,p-1,p^2-p,p^3-p^2,・・・,p^(n-1)-p^(n-2),p^n-p^(n-1)

dは決定番号
*)は、場合の数で、全体ではp^n
これを確率分布に直すと

d=   1,     2,     3,       4     , ・・・,   n-1,  n
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,p^-p^2, 1-1/p

時枝の決定番号では、見ての通り、nが大きくなっても
減衰しません(下記「裾の重い分布」ご参照)

こういう分布で、d→∞ になると
なので、d→∞で確率論における確率測度(probability measure )(例えば下記重川「定義1.3」(特にP(Ω)=1)など)を満たさなくなるのです

外部リンク:ja.wikipedia.org
裾の重い分布
(抜粋)
裾の重い分布あるいはヘヴィーテイルとは、確率分布の裾がガウス分布のように指数関数的には減衰せず[1]、それよりも緩やかに減衰する分布の総称。 また類似の用語に、ファットテイル、裾の厚い分布、ロングテール、劣指数的(subexponential)などがある。

スレ74 2chスレ:math
外部リンク[pdf]:www.math.kyoto-u.ac.jp
2013年度前期 確率論基礎 講義ノート 重川一郎 京都大学大学院理学研究科数学教室
P6
定義1.3 可測空間(Ω,F)上の測度PでP(Ω)=1 を満たすものを確率測度(probability measure )という。
876
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)17:54 ID:KY2miv9A(19/23) AAS
>>843
>無限列は「これ以上分けられない」のですよね?

分けられますよ
下記の確率論 Makoto Mori 日大 2013
P12 例 1と例 2 ご参照
(^^

外部リンク:www.math.chs.nihon-u.ac.jp
Makoto Mori
外部リンク[pdf]:www.math.chs.nihon-u.ac.jp
確率論 Makoto Mori 日大 2013
P12
第 1 章 確率空間
例 1 An = {ω ∈ {0, 1}^N : ωn = 1} とおけば,P(An) = 1/2 は,Borel?Cantelli
の (2) をみたす.したがって,確率 1 で硬貨投げは表が無限回現れる.
例 2 Akn = {{0, 1}^N : ωn = ・ ・ ・ = ωn+k?1 = 1} とおけば,P(Akn) = 1/2^k は,
Borel?Cantelli の (2) をみたす.したがって,確率 1 で硬貨投げは表が連続 k
回が無限回現れる.確率 1 の集合の可算交わりは確率 1 なので,いくらでも
長い連が確率 1 で現れる.

P28
第 3 章 確率変数
例 4 X1, X2, . . . を独立な硬貨投げとする.
例 5 X1, X2, . . . を独立な硬貨投げとする.
877
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)18:09 ID:KY2miv9A(20/23) AAS
>>870
ピエロちゃんじゃないのかね?
もし、違ったら、ご容赦
(まだ疑念は残るが)
なお、”ピエロ”の定義は、>>2ご参照

(引用開始)
”あなたは「自然数論の真偽の定義」を示せていませんね
要するにあなたは論文を理解できないにもかかわらず
論文の著者を無条件に信じた愚か者ですね”
(引用終り)

ご冗談でしょw
貴方は、どんなに偉い人かしらないが
ただの 132人目の素数さん=ID:bH+0Hw/zでしょ
いや、別に、数学を偉さで判断しようとは思わないが

あなたは、前原昭二先生の 1979の投稿論文(下記)が間違っていると言いたいわけ??ww(^^
この5CHのガロアスレで、言いたいわけ?w
議論の場所を間違えていませんか?
自分の蘊蓄を語りたいの?
なら論文投稿したら?
それとも精神科を紹介しましょうか(^^

参考(>>802
外部リンク:www.jstage.jst.go.jp
自然数論 の無 矛盾性証明の必要性
前原昭二 筑波大学数学系 科学基礎論研究 Vol.14 1979

>>821
外部リンク:ja.wikipedia.org
論理学者
(抜粋)
前原昭二

外部リンク:kotobank.jp
コトバンク
前原昭二(読み)まえはら しょうじ デジタル版 日本人名大辞典+Plusの解説

1927−1992 昭和後期-平成時代の数学者。
昭和2年10月30日生まれ。
38年東京教育大教授となる。
52年筑波大教授。
55年東京工業大教授。
63年放送大教授。
数理論理学の研究で知られる。平成4年3月16日死去。64歳。
東京出身。東大卒。著作に「数学基礎論入門」「記号論理入門」など。

外部リンク:7shi.hateblo.jp
七誌の開発日記
2018-11-02
(抜粋)
ブルバキ数学原論日本語訳の巻番号
リスト
1.1968年『集合論 1』前原昭二訳(第1章、第2章)
878: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)18:14 ID:KY2miv9A(21/23) AAS
>>877 タイポ訂正

外部リンク:www.jstage.jst.go.jp
自然数論 の無 矛盾性証明の必要性
 ↓
自然数論の無矛盾性証明の必要性

妙に、半角スペースが入るんだよね(^^
880
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)18:22 ID:KY2miv9A(22/23) AAS
>>877 補足

自然数論なんて
 >>793
"自然数論は自然数全体の集合の存在を前提した理論ではない"

を茶化すために
 >>802
前原昭二先生を引用しただけで
集合を外れた「自然数論」に深入りするつもりはないわけよw(^^

こちらとしてはね
そんなものは、いまの大学数学科の教程にないし
オワコンでしょう? 違いますか?(^^;

でも、数学史として、こういう議論もあったということは
知っておいても良いとは思いますよ

(参考)
外部リンク:www.jstage.jst.go.jp
自然数論の無矛盾性証明の必要性
前原昭二 筑波大学数学系 科学基礎論研究 Vol.14 1979
883
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)22:34 ID:KY2miv9A(23/23) AAS
>>875 訂正と追加

訂正
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,p^-p^2, 1-1/p
 ↓
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,1/p-1/p^2, 1-1/p

追加
(引用開始)
dは決定番号
*)は、場合の数で、全体ではp^n
これを確率分布に直すと
d=   1,     2,     3,       4     , ・・・,   n-1,  n
p=1/p^n,1/p^(n-1),(p^2-p)/p^n,(p^3-p^2)/p^n,・・・,1/p-1/p^2, 1-1/p
(引用終り)

ここ分かると思うが
s = (s1,s2,s3,・・・,sn) (問題の数列)
r = (r1,r2,r3,・・・,rn) (代表の数列)
差を取ると
s-r = (s1-r1,s2-r2,s3-r3,・・・,sn-rn)
決定番号dなら、d番目から両者が一致して0になります。

それで、上記の分布で分かることは、d=1とか2とか小さい値の確率は小さいのです
確率的には、d=nとなる場合が、一番確率が大きいのです

それで、入れる数p→∞と大きくすると
d=n の確率 1-1/p→1
d=n以外の確率 (p^3-p^2)/p^n(など)→0
となります

なので、d=n以外の確率は0になるのです
d=n以外の場合を論じるのは、確率の0場合を論じていることになります。
確率の0場合に、二つの決定番号でどちらが大きいかなどと言っているのが、時枝記事の手法です
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.056s