[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
74
(1): 2019/08/25(日)23:47:43.91 ID:sw72Gobg(26/28) AAS
>>71
>お前らに合わせて書いていると言ってるだろ(笑
だからそんな言い訳不要と言ってるだろ(笑
255: 2019/08/28(水)20:33:43.91 ID:l7VTYfyv(7/8) AAS
さて、今日の一曲は…
320
(1): 2019/08/29(木)22:38:08.91 ID:BgUyythS(5/6) AAS
>>316
答えを知っていてもハズレと判定してしまうから
それだと数当ての成否は正しく判定できないんだよ
392: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/30(金)22:04:00.91 ID:exryDrPV(15/20) AAS
「高校数学基本事項 ? 数学B ? 確率変数の和と積,二項分布」w(^^;
外部リンク:mathrao.com
MATHRAO
【定義・定理・公式】高校数学基本事項 ? 数学B ? 確率変数の和と積,二項分布 2018.10.19
(抜粋)
確率変数の独立・従属

確率変数の独立・従属
【定義】

独立

2つの変数
X,Y があって,X のとる値 a と,Y のとる値 b に対して,
P(X=a,Y=b)=P(X=a)P(Y=b)が
a,b のとり方に関係なく常に成り立つとき,確率変数
X,Y は互いに独立であるという。

※3つ以上の確率変数が互いに独立であることも同様に定義される。
529
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)10:13:20.91 ID:dvD9YE7H(15/39) AAS
>>527
つづき

(参考)
スレ47 2chスレ:math
時枝問題(数学セミナー201511月号の記事)
(抜粋)
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版).
念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
幾何的には商射影 R^N→ R^N/〜の切断を選んだことになる.
任意の実数列s に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ.
sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す.
つまりsd,sd+1,sd+2,・・・を知ればsの類の代表r は決められる.
更に,何らかの事情によりdが知らされていなくても,あるD>=d についてsD+1, sD+2,sD+3,・・・
が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ, したがってd= d(s)も決まり,
結局sd (実はsd,sd+1,・・・,sD ごっそり)が決められることに注意しよう.

外部リンク:ja.wikipedia.org
多項式環

外部リンク:ja.wikipedia.org
ベクトル空間
(抜粋)
数ベクトル空間 Fn は、すでに示した基底によってその次元が n であることがわかる。
多項式環 F[x](上述)の次元は可算無限(基底の一つは 1, x, x2, … で与えられる)
(引用終り)
以上
564: 2019/09/01(日)16:12:18.91 ID:uj+Nfmst(38/51) AAS
>>561
>選んだ代表から決まる決定番号d = d(s)は、
>「D>=d」となる確率はゼロ、つまりP(D>=d)=0

誤り

数列が確率変数だとした場合
「D>=d」となる数列全体の集合が
非可測なので0とはいえない
721
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/05(木)06:50:22.91 ID:RfCUEXWL(1/10) AAS
”確率変数”については、下記 渡辺澄夫 東工大が分り易い
”関数を出力と同一視(混同)する(X=X(w))”、出力=関数値です
サイコロの目がサイコロ(振る)の試行に対応して値が決まる関数で、1〜6が関数値です
そして、例えば4とか5とか、各関数値が”確率変数”です(^^
”確率変数”だからと言って、ころころ変化するわけではない
そういう意味では、1つの試行(サイコロを振る)で、関数値が4と決まれば、それは変化しません!(^^
>>700 大数の法則中の確率変数も見て下さい(^^ )
スレ62 2chスレ:math
(抜粋)
”可測関数X: Ω→Ω’
・関数のことを確率変数と呼ぶ
 関数を出力と同一視(混同)する(X=X(w))
 関数がランダムなわけではない”

”P10 なぜこんな定義をするのか
(Ω, B, P)がわからずX だけ観測できる人には
Xがランダムである場合も含む定義になっている
そこで関数X(w) とその出力値X を同一視して
確率変数(random variable)と呼ぶことにした。
これで「ランダムでないとはいえないもの」が定義された”

確率変数と”変数”の違いが分らない人がいるな(^^;

(スレ61より 2chスレ:math
131 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/02/20(水)
過去の確率変数論争(”確率変数は箱に入れられない”)に対し、下記の説明いいね!(^^
外部リンク[pdf]:watanabe-www.math.dis.titech.ac.jp
確率論入門 渡辺澄夫 東工大 2018
(抜粋)
P8 確率変数
可測関数X: Ω→Ω’
を(Ω’に値をとる)確率変数という
・関数のことを確率変数と呼ぶ
 関数を出力と同一視(混同)する(X=X(w))
 関数がランダムなわけではない

P9 確率変数の気持ち
W
(Ω, B, P)
数学的に定義されるが
観測できないものとする
運(w)の決め方は
定めないでおく
 ↓
X=X(w)
Xの値は 実世界で ランダムでない とはいえない

つづく
769
(1): 2019/09/06(金)19:42:45.91 ID:j8Bzvcu+(11/12) AAS
>>759
>3)多分この人が、
>「(外測度を使った)測度論的確率論で正当化できて、パラドクスも説明できる」
>と言い出した人でしょうね

その人かどうかは知らないが
時枝記事で、箱の中身を定数と考えた場合に正当なので
箱の中身を確率変数とした「より強い主張」での正当化は必要ない
(Prussの主張は、箱の中身を確率変数とした場合に
 非可測性により正当化できないということであって
 この主張自体はもっともであるが、
 Riddleおよび時枝記事では箱の中身は定数だから
 Prussの主張によって否定されることはない)

>この人は、いま、サイコロの目は時枝の無限個の箱には入れられないと主張しています

単に 
「数学的帰納法で、P(∞)も証明できる」
というトンデモ主張に対する「まっとうな」反論だろw

サイコロの目を無限個の箱に入れられる根拠は数学的帰納法ではなく無限公理
数学的帰納法=無限公理、と思ってる馬鹿は、貴様一匹だけw
962: 2019/09/09(月)18:52:34.91 ID:uwfnXwUu(49/60) AAS
>>958
>集合を外れた「自然数論」に深入りするつもりはないわけよ

素人の訳の分からん妄想ですね

自然数論において「自然数全体の集合」は出てきません
必要ないからです
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.067s