[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
4
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/25(日)15:38:51.86 ID:5ZvpTN/e(4/21) AAS
つづき

8) てへぺろ☆(・ω<)さん 70 2chスレ:math
 この人、ほんとはレベル高いみたい(^^
 (以下参考)“T大卒じゃなくN大卒、という設定で(設定かよ!)”
 “私もその昔、数学科というところで学んでたんですが どうしても興味が向かない分野ってのがあって その一つがガロア理論だったんですね(をひ
 ああ、こりゃ俺、数学無理だなと思って 計算機関係に方向転換しましたけどね”
 ですが、記憶が5分しか持たず、時枝問題でトンチンカンなので、撤退頂きました。まことに、残念でしたが(:p

9) Ω星人の数学者さん、たまに現れます(^^

10)おっちゃん(別格)
自称、某R大卒。関数論に詳しい。「オイラーの定数γが有理数であることの証明を得た!!」という(^^
スレ68 2chスレ:math
「数学雑談&ガロア理論 〜おっちゃんとボクと、時々、(時枝 & ¥さん)〜」かな(^^

まあ、常連さんは、全員数学の非専門家でしょう(プロ(職業)ではない人)
∵数学のプロが、こんなところに“粘着”するわけがない(^^

常連カキコさんは、こんなところだ
まあ、解説が漏れていたら、ご容赦

以上、このスレのROMさんたちのための、常連カキコさんとおっちゃん(別格)の解説でした(^^;
166: 2019/08/27(火)06:43:30.86 ID:j9tjY5vX(1/19) AAS
>>99
>i)サイコロを振って箱に入れたが、プレーヤーからは見えない場合

毎回の試行で箱の中身が変わらないから、確率変数でなく定数

見える見えないは確率変数か否かと全く無関係

ニワトリ頭ってホント馬鹿だなwww
277: 2019/08/29(木)01:31:12.86 ID:F6jSJdzt(4/19) AAS
妄想ザルの珍言集
「麻雀の勝率は1/4」←プロは初心者に勝ち越せないことになるw
「成立派はP(C)=P(A)と主張」←サルの妄想w
「成立派はP(A)が必要と主張」←それを主張してるのは確率論の専門家w
「箱の中身は出題者の自由」←そこは誰も否定していないw
「よって確率分布も出題者の自由」←確率変数を決めるのは回答者w 確率分布は確率変数抜きに語れないw
435
(2): 2019/08/31(土)17:42:43.86 ID:643MmAXP(9/26) AAS
>>421
現代確率論は何を確率変数にするか強制しちゃうんだw
それに従わなかったらどうなるの? 懲役?w

妄想ザルは妄想が激し過ぎる
数学のまえにその精神病治療しろ
話にならない
452
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/31(土)20:47:52.86 ID:PbGhNKv4(17/30) AAS
>>450
(引用開始)
時枝解法の仮定は選択公理のみ
よって「時枝解法が否定されるなら選択公理が否定される」は正しい
分からないのは大学数学を理解していないアホザルのみ
(引用終り)

よかった
やっぱり、
おサルはおサルだった(^^;
480: 2019/08/31(土)23:21:13.86 ID:643MmAXP(24/26) AAS
>>479
ああ、なるほどw
おまえ人違いしてるんだな?w
だから撤回がどうのこうのと言ってるんだな?w
IDも確認できないほど発狂すんなよw

で「現代数学の確率変数」って何だよw
676
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/03(火)23:05:48.86 ID:TckWkbgX(10/12) AAS
さあ、踊って下さい by サル回しのスレ主よりw(^^
696: 2019/09/04(水)07:23:26.86 ID:4z5/pAq/(10/12) AAS
>>693
相変わらず何も考えずに発狂する大阪のおバカちゃん

こりゃ人生負けるわけだwwwwwww
699
(2): 2019/09/04(水)08:51:48.86 ID:vmK0wdLu(1/4) AAS
>>688
>>697
> 出た目の数をX とすると
だからスレ主が言っている「確率変数」って単に箱の中の値を知らないって
ことなんだよね?その値を確率的に当てると

時枝戦略ではランダムに100列から1列選んだ後に残りの99列を開けて行うわけだが
ランダムに1列選んだ後に100列全てを開けてもplayer2が答える数字は変わらない
箱の中身を全て見れる状態でも数当てに失敗する確率は変わらない

時枝戦略では列を選ぶ行為だけが確率的試行である

sn = {X1, 1, 4, 1, 5, 9, 2, 6, 5, ... }
sn = { 3,X2, 4, 1, 5, 9, 2, 6, 5, ... }
sn = { 3, 1,X3, 1, 5, 9, 2, 6, 5, ... }
...
sn = { 3, 1, 4, 1, 5, ... , Xn, ... }

Xi(iは任意の自然数)は0から9の数字をとるとする
この時Xiがとり得る値は10通りであり無限数列snの候補もXiごとにそれぞれ10通り

しかし数列が属する同値類は変化しないので1通り (時枝戦略はこちらを使う)
袋の中の代表元は変化しないので同値類ごとに1通り
99列を「開けて」数当てをする箱を決めるとある列で数当てを行う箱の候補は1通り
袋の中の代表元から答えを決めるからplayer2にとって箱の中の数字の候補は1通り

100列に分けたら100個の箱(の中の数字) = 数当てで答える数字の候補は100通り
806
(1): 2019/09/07(土)12:44:50.86 ID:I7oh7viS(1/2) AAS
最近このスレで時枝問題知りました。面白いですね。

> 時枝の数当てには、厳密な数学の証明がないと批判されていますよ
そうですか?

> つまり、サイコロの出目を入れると、各箱の確率は1/6になる。例外は無し
そうですね。

> ところが、時枝は、例外的にある箱が確率99/100になるという
厳密にはおかしいですね。
後半の議論は、100個の自然数が与えられたら、所望のものが確率99/100「以上」で選べるというものでしょう。

はじめと後半とで主張が違うから矛盾といいたいのでしょうが、それは浅はか

途中の操作が確率論で扱えないものなだけですね。

つまりはバナッハ・タルスキと同じ状況。
なので、別に数学的におかしなことはないのでした。

球の体積評価するときにバナッハ・タルスキ使って体積がおかしい!なんていわないでしょう。
850
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)10:59:53.86 ID:KY2miv9A(10/23) AAS
>>847
(引用開始)
>(>>832 「ZFC公理系について:その2」で、自然数Nが数学的帰納法(ペアノの公理)を満たすことが証明されています。つまり、自然数Nは「1つずつ」で尽くされる!勿論、無限公理を認めた上ですがね)
「自然数Nは「1つずつ」で尽くされる。」が意味不明。
「自然数Nが数学的帰納法を満たす」からなぜ「自然数Nは「1つずつ」で尽くされる。」が言えるのか?
(引用終り)

下記もご参照ください
1)数学的帰納法 P(0)とP(n)で成り立ち、nの後者 n+1(下記ではn+)でP(n+1)が成立つ→全ての自然数Nで成立つ
2)これを公理として認めるわけですから、”「P(k) ⇒ P(k + 1)」で自然数全体に至る”を認めるということです
QED

>>832より)
外部リンク:tech-blog.rei-frontier.jp
Rei Frontier Tech Blog
2017-11-09
ZFC公理系について:その2
(抜粋)
ペアノの公理
前節の議論によって、我々はついに当初の目的であった「自然数の全体」という、具体的でかつ非自明な集合を手に入れることができました。

今我々が構成した"集合論的自然数"が"普通の自然数"と同じような"算術的性質"をもつことが示されるでしょうか?

自然数のもつべき"算術的性質"には、大小関係、足し算掛け算等々いろいろありますが、それらはいくつかの基本的な性質から証明できます(長くなるので、本記事では扱いません)。そのような基本的性質として挙げられるのが、ペアノ(Peano)の公理です。
すなわち、集合aがつぎの命題たちを満たしていれば、aは"自然数の集合の算術的性質"を満たすことが示されます:

補題2の証明で活躍した公理(P3)は数学的帰納法の原理とも呼ばれています。実際、Peanoの公理は高校数学などでもお馴染みの数学的帰納法の定理を含んでいます:

つづく
867
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/08(日)14:29:17.86 ID:KY2miv9A(17/23) AAS
<i.i.d. 独立同分布>
・現代確率論が、独立な確率変数の無限族を扱えることは、下記時枝記事にもある
(時枝は、「箱にXnのランダムな値を入れられて」と表現しているが、数学では箱自身をXnと考えることができる(念のための注))

・箱が1つある。それをXiとする。サイコロの目を入れる。自明にP(Xi)=1/6
・その回りに箱を1つ増やす。独立で同分布として、サイコロの目を入れるとして、同じく確率は1/6。
・箱をn個増やす。上記同様
・箱をn+1個増やす。上記同様
・数学的帰納法により、全ての自然数で成立つ。つまりは、時枝記事の数列に適用できるということ
(自明だが念のため)・そして、時枝先生は、反省しています。 (下記)「もうちょっと面白いのは,独立性に関する反省だと思う.その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,当てられっこないではないか−−他の箱から情報は一切もらえないのだから」
(下記の独立の定義より)
・独立だから、Xi以外の箱の変数の値が分かっても、Xiの確率は変化せず、P(Xi)=1/6のまま
・”i.i.d. 独立同分布”の仮定より、全てのiについて上記は成立する
QED

(参考)
スレ47?2chスレ:math
(抜粋)
数学セミナー201511月号P37 時枝記事より
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
(引用終り)

外部リンク:ja.wikipedia.org
独立 (確率論)
(抜粋)
2つの事象が独立といった場合は、片方の事象が起きたことが分かっても、もう片方の事象の起きる確率が変化しないことを意味する。2つの確率変数が独立といった場合は、片方の変数の値が分かっても、もう片方の変数の確率分布が変化しないことを意味する[1]。

事象 A と B が独立であるとは、事象 B の起こることが事象 A の起こる確率に一切の影響を与えないことを意味する。
905
(1): 2019/09/09(月)11:11:23.86 ID:uwfnXwUu(13/60) AAS
5つの典型的なBullshit Jobs

? ”Flunkies(太鼓持ち)” 
受付係、秘書、ドアマンなど、自分が重要な人物だと思わせるために存在する仕事
? ”Goons(用心棒)” 
ロビイスト、企業弁護士、テレマーケター、広報など、雇い主のために相手を攻撃する仕事
? “Duct Tapers(落穂拾い)” 
出来の悪いプログラムの修正など、そもそもあってはならない問題の手直しをする仕事
? “Box Tickers(社内官僚)”  
パフォーマンスマネジャー、社内広報誌のジャーナリスト、休暇のコーディネーターなど、内向きの仕事
? ”Task Makers(仕事製造人)” 
中間管理職やリーダーシップの専門家など、無駄な業務を生み出す仕事

>>1様、あなたの仕事はどれですか?
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.045s