[過去ログ] 現代数学の系譜 工学物理雑談 古典ガロア理論も読む76 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
84: 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/26(月)00:00:12.71 ID:vy06dtEh(1/9) AAS
>>81
哀れな素人さん、どうも。スレ主です。

>馬鹿かお前は(笑
>しつこいサル

サイコパスの相手は、ほどほどに
相手は、◯◯ですから
197
(1): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/27(火)08:30:29.71 ID:TQfuB7BH(11/23) AAS
>>193 追加
(参考)
外部リンク:orz107orz.hatenablog.com/entry/20140805/1407247521
カラテオドリの外測度 アクセス不能の原因 20140805
(抜粋)
定義5.(カラテオドリの外測度)
集合X≠Φに対して,2^X上の関数μ*が次の三つの条件を満たすとき,
μ*をカラテオドリの外測度という.

外部リンク:arxiv.hatenablog.com/entry/2018/04/09/012313
arXiv探訪
2018-04-09
測度と外測度
(抜粋)
外測度による測度の構成

定義 集合函数μ:2^S→[0,∞]が正値、単調、可算劣加法的のとき、外測度(outer measure)あるいはカラテオドリ(Caratheodory's)の外測度と呼ぶ。

外部リンク:ja.wikipedia.org
外測度
(抜粋)
数学、とくに測度論における外測度(がいそくど, outer measure, exterior measure)は、与えられた集合の全ての部分集合に対して定義され、補完数直線に値をとる集合函数で、特定の技術的条件を満足するものを言う。
この概念はコンスタンティン・カラテオドリ[1]によって加算加法的測度の理論の基礎を与えるため導入された[2][3]。
その後のカラテオドリの研究によるカラテオドリの拡張定理や、フェリックス・ハウスドルフによる距離空間のハウスドルフ次元などに関する多くの応用が見つかった。

カラテオドリの外測度は任意の部分集合に対して値が定まるが、それらの中には望ましい性質を持つ「可測集合」とそうでない非可測集合(英語版)とが混じっていることに注意すべきである。
外測度の構成の目的は、そうして可測集合のクラスだけを取り出せば、それが完全加法族でありかつその上に定義域を制限した外測度が完全加法性を満たし実際にひとつの測度を与えるという点にある。
292
(5): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/29(木)07:15:33.71 ID:aQWHRZvT(6/14) AAS
再度言おう
スレ75 2chスレ:math
時枝記事の手法など
プロ数学者は、だれも相手にしない
不成立に見えて、自明に不成立だから w(^^

スレ75 2chスレ:math
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
 サイコロ,コインなら、確率空間は、下記の定義の通り。
 サイコロΩ={1,2,3,4,5,6}で、1〜6の数が箱に入り、各確率1/6
 コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn
 i.i.d. 独立同分布とすると、各箱は上記1の通り
(2’箱がn+1個。確率変数X1,X2,・・・,Xn+1
 i.i.d. 独立同分布とすると、各箱は上記1の通り )
3.箱が可算無限個。確率変数X1,X2,・・・ →X∞
 i.i.d. 独立同分布とすると、各箱は上記1の通り
4.これは、数学的帰納法の証明にもなっている。時枝は、これで尽きている。上記1〜3のどの箱の確率変数も例外なし!
QED(^^

(参考)
外部リンク:mathtrain.jp
確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06
外部リンク:ja.wikipedia.org
数学的帰納法
304
(6): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/29(木)11:47:29.71 ID:ZEKcuuCA(1/5) AAS
>>291
>>>288
>>「確率定数」があるのかw
>確率は不要 定数でいいよ

別にいいけどなw
しかし、”定数”とか言いきったら
箱が有限のときに、確率計算どうするんだ?(^^

 >>292に書いたけど
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
 サイコロ,コインなら、確率空間は、下記の定義の通り。
 サイコロΩ={1,2,3,4,5,6}で、1〜6の数が箱に入り、各確率1/6
 コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn
 i.i.d. 独立同分布とすると、各箱は上記1の通り
(引用終り)

箱が1個、サイコロ1つの目を入れる。入る数は1から6。
人は、確率変数(Xとか)を使って、確率1/6と計算します

おサルは、定数なので、確率計算不要です
箱1個なので、P=1かい? 笑えるな、おサルはw
327
(1): 2019/08/29(木)23:02:24.71 ID:F6jSJdzt(14/19) AAS
>>312
>(ヒトは、分布を考える)
> おサルは、分布を考えないんだ
時枝解法の確率分布は一様分布であると理解できるのが人間
非可測がああああああと喚き散らすのがサル畜生
340
(1): 2019/08/30(金)06:32:04.71 ID:EvACihHh(4/21) AAS
>>332
>箱の中の数字を確率変数とみなす必要はない

…というよりみなさない
時枝記事ではそのように記載している
398
(3): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/08/30(金)23:03:49.71 ID:exryDrPV(17/20) AAS
おサルの確率論には、確率変数が出てこない
ミルカちゃん、テトラちゃん、おサルに確率変数を教えてあげてw(^^

外部リンク:cakes.mu
数学ガールの秘密ノート
結城浩
第127回 コインを10回投げたとき(前編)
登場人物紹介
僕:数学が好きな高校生。
テトラちゃん:僕の後輩。好奇心旺盛で根気強い《元気少女》。

高校の図書室

僕「コインを回投げたとき、表は何回出るだろう。何だか、ひとりごとみたいな問題だね。 それで、テトラちゃんは、投げた回数の半分の回が表になると思ってる……そういうこと?」

テトラ「はいはい。そういうこと、です」

テトラちゃんは小刻みにうなずく。
僕「うーん、でも、これって確率の問題だよね。確率というか、統計か。だって、コインを回投げたとき、いつも表が回出るとは限らないよね」

パスカルの三角形

外部リンク:cakes.mu
第128回 コインを10回投げたとき(後編) 2015年8月21日

僕とテトラちゃんは《コインを回投げるときに表が出る回数》について計算していた。
僕「電卓を使えば、もっと正確に求められるけどね。ともかくσ=√2.5はわかった」

ミルカ「試行が行われたときに値が定まる変数のことを確率変数という。より正確には、確率変数とは《イベント全体の集合から実数への関数》だ」

テトラ「確率変数は、変数なのに関数なのですか……ややこしいですね」

ミルカ「違う。同じΩに対して、確率変数Xを考える。Xjは、 コイン投げj回目で表が出たら1で、 裏が出たらになる0確率変数だ」
485
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/01(日)00:03:10.71 ID:dvD9YE7H(2/39) AAS
>>475
(引用開始)
箱の中身を時枝戦略では確率変数としていないが、別の戦略で確率変数とすることは可能。
但し勝てる戦略にはならない(勝率を計算できない)ので無意味なだけだが。
(引用終り)

100列に対応する自然数d1,d2,・・・,d100
これが、ランダムに区間[0,1]から選んだ一様な数の数当ての確率と同じなるということの証明がないですよと
ヒトはいう

「ランダムに区間[0,1]から選んだ一様な数の数当ての確率」
”高校数学の美しい物語”では、それは確率0です
”(勝率を計算できない)”のではなく、測度論的に確率0です

(参考)
外部リンク:mathtrain.jp
高校数学の美しい物語
最終更新:2015/11/06
確率空間の定義と具体例(サイコロ,コイン)
(抜粋)
標本空間 Ω
Ω の各要素は根元事象と呼ばれます。 ω と書くことが多いです。

例3
[0,1] 上の一様分布(ランダムに 0 から 1 の間の実数を返すモデル)
Ω={ 0 以上 1 以下の実数全体 }
505: 2019/09/01(日)09:08:50.71 ID:uj+Nfmst(8/51) AAS
>>475
>定数を確率変数としてはいけないなんてことは無い。

どういう問題を設定してもよい、という意味なら正しい
しかし
「時枝問題で、箱の中身を定数としても確率変数としてもよい」
という意味なら誤りだね

箱の中身が定数(つまり毎回の試行で箱の中身を一切入れ替えない)とするのと
箱の中身が確率変数(毎回の試行で箱の中身を入れ替える)とするのでは
問題が変わる

時枝記事では前者の問題について回答を与えている
後者についても同じ回答になるというならそれは誤り
なぜなら後者の場合非可測性により答えが出せないから

>コイントスで回答者が回答するとき
>裏か表かは確定している。つまり定数である。

定数の考え方が違うね
誰が回答する場合にも、箱の中身が同じであることが、定数の条件

>しかし回答者には分からないので確率変数としてもよい。

分からないから確率変数、というならそれは誤り
誰が回答する場合にも、箱の中身が同じであるなら
回答者が箱の中身を知らなくても定数
639
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/03(火)07:13:05.71 ID:TckWkbgX(2/12) AAS
>>637
>>確率変数X1,X2,・・・ →X∞
>X∞はないな

おさるの妄想にも困ったものよ
まず、時枝記事自身が、「独立な確率変数の無限族」を認めているよ(下記)
それを、「X∞はないな」と曲解して、おれの”確率変数X1,X2,・・・ →X∞”を否定しようとしてもだめだめ
QED (^^

(参考)
スレ47 2chスレ:math
(抜粋)
数学セミナー201511月号P37 時枝記事より
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
(引用終り)
734
(1): 2019/09/05(木)21:14:48.71 ID:asffHquF(2/4) AAS
>>721
確率変数の定義が問題なのではない
サルが時枝解法の確率変数を分かっていないことが問題なのだ
「さて, 1〜100 のいずれかをランダムに選ぶ. 」→ Ω={1,...,100}, P(∀i∈Ω)=1/100
827
(4): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/07(土)22:15:47.71 ID:8WzaZQff(24/27) AAS
>>823
>> 全単射
>なら逆も言わないといけないんですよ

いいえ、一対一対応であることをご確認ください
それで、「全単射」といえますよ

(参考)
外部リンク:kotobank.jp
コトバンク
ブリタニカ国際大百科事典 小項目事典の解説
一対一対応
いちたいいちたいおう
one-to-one correspondence
2つの集合 A ,B の元を互いに対応させるとき,A の任意の1つの元に B のただ1つの元が対応し,B の任意の1つの元に対し A の元がただ1つ対応するようにできるとき,この対応は一対一であるという。
このとき集合 A ,B は対等であるという。
この概念は,全単射の概念とまったく同等である。
たとえば,自然数全体の集合,偶数あるいは奇数全体の集合,平方数全体の集合は,それぞれ一対一に対応するので対等である。
一対一対応の概念は,G.カントルが無限の問題を解決するために,1870年代に,初めて数学上の基本概念として用いたものである。
(引用終り)

>>805再録します)
箱1,2,3,・・・・(箱の可算無限列)
 ↓↑
N 1,2,3,・・・・(自然数)
 ↓↑
X1,X2,X3,・・・・(確率変数)
 ↓↑
1,3,2,3,5・・・・ (サイコロの目による無限数列の一例)

ここに、”↓↑”は、上の集合と下の集合が全単射になることを意味する
(なにを、ごちゃごちゃと曲解しているのですかね〜w(^^; )

<補足>
1)上記の順序を保ったまま、そのまま「一対一対応」になっています
2)最後の数列 1,3,2,3,5・・・・は、
 細かく書けば、(1,1),(2,3),(3,2),(4,3),(5,5)・・・・
 のように二次元で (n,X) nはサイコロ投げの番号で、Xは出たサイコロの目です。
 しかし、お互い煩わしいだけでよ、こんな記載は。なので、簡便に書きました。お分かりか?w(^^
以上
890: 2019/09/09(月)08:42:40.71 ID:oA3pm0/T(1/9) AAS
>>885
100個の決定番号がどんな自然数だろうと時枝解法は成立する。
なぜなら自然数の基本性質から「100個中単独最大は1個以下」は避けようが無いから。

確率0?
おまえの云う確率とはd(R^N)の中での割合に他ならないが無意味。
なぜなら時枝解法における決定番号の大小比較は {d(s1),...,d(s100)} の中だから。

相変わらずバカ丸出しのサルでした
957
(2): 現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2019/09/09(月)18:24:23.71 ID:w2gV7wtr(24/38) AAS
>>956 補足

1)経緯は下記です(^^
2)であなたのいう「自然数論」は、
 2019年の現在では
 数理論理学あるいは数学基礎論になっているってことですよ

(経緯引用)
>>880
集合を外れた「自然数論」に深入りするつもりはないわけよw(^^
そんなものは、いまの大学数学科の教程にないし
オワコンでしょう? 違いますか?(^^;
でも、数学史として、こういう議論もあったということは
知っておいても良いとは思いますよ

>>887
>そんなものは、いまの大学数学科の教程にない
ウソはいけませんね
ありますよ あなたが知らないだけです
>オワコンでしょう? 違いますか?
違いますね 現役ですから

>>893
>そんなものは、いまの大学数学科の教程にない
>ウソはいけませんね
>ありますよ あなたが知らないだけです
はい
2019年あるいは、近年でも良いです
例示願います
>>オワコンでしょう? 違いますか?
>違いますね 現役ですから
多くの大学数学科の教程で、「自然数論」はやらないでしょう?w
新井 敏康先生の2019年の主要な研究テーマが、「自然数論」なのですか?
それって、証明ある?w(^^;
(引用終り)
1000: 2019/09/10(火)06:55:58.71 ID:XwGiI0uG(3/3) AAS

前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ

ぬこの手 ぬこTOP 0.046s